MODEL REGRESI NONPARAMETRIK KERNEL MENGGUNAKAN ESTIMASI NADARAYA-WATSON UNTUK DATA HARGA INDEKS SAHAM GABUNGAN DI INDONESIA

No Thumbnail Available

Date

2022-05

Journal Title

Journal ISSN

Volume Title

Publisher

Elfitra

Abstract

The composite index is one of the stock price indexes in Indonesia. In this study the kernel nonparametric regression model with the Nadaraya-Watson estimator for the composite index data. The kernel regression method is one of the methods in nonparametric regression used to estimate conditional expectations using kernel functions. The kernel function used in this study is the Gaussian kernel function. The data used is the composite stock price index in Indonesia in 2018-2019. The first step is to determine in advance the optimal bandwidth with the Generalized Cross Validation (GCV) method. Kernel regression using gaussian kernel functions obtained a bandwidth value of 82,03 with an optimal GCV of 269,42. Based on the results of the analysis to measure the goodness of the model using Mean Absolute Square Error (MAPE) of 2,71, which means that the MAPE value is in the first category which is very good.

Description

Keywords

Nonparametric regression, Nadaraya-Watson estimation, Generalized Cross Validation, bandwidth, Mean Absolute Square Error

Citation

Perpustakaan

Collections