PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR

dc.contributor.authorAfrina, Merintan
dc.date.accessioned2016-04-27T03:51:15Z
dc.date.available2016-04-27T03:51:15Z
dc.date.issued2016-04-27
dc.description.abstractThis paper discusses the preconditioner for solving the linear system Ax = b, where A is of the form M-matrix. The paper review of Li-ying Sun [Journal of Computational and Applied Mathematics, 181(2005); 336 − 341]. Numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, the spectral radius of the preconditioned IMGS method is smaller than that of the SOR method and Gauss-Seidel method. Numerical simulation using some size of A show that the convergence rate of IMGS method can be increased using the preconditioneren_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8302
dc.language.isoenen_US
dc.subjectM-matrixen_US
dc.subjectspectral radiusen_US
dc.subjectSOR iterative methoden_US
dc.subjectregular splittingen_US
dc.titlePERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEARen_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MERINTAN.pdf
Size:
690.63 KB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections