PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR
dc.contributor.author | Afrina, Merintan | |
dc.date.accessioned | 2016-04-27T03:51:15Z | |
dc.date.available | 2016-04-27T03:51:15Z | |
dc.date.issued | 2016-04-27 | |
dc.description.abstract | This paper discusses the preconditioner for solving the linear system Ax = b, where A is of the form M-matrix. The paper review of Li-ying Sun [Journal of Computational and Applied Mathematics, 181(2005); 336 − 341]. Numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, the spectral radius of the preconditioned IMGS method is smaller than that of the SOR method and Gauss-Seidel method. Numerical simulation using some size of A show that the convergence rate of IMGS method can be increased using the preconditioner | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.other | wahyu sari yeni | |
dc.identifier.uri | http://repository.unri.ac.id/xmlui/handle/123456789/8302 | |
dc.language.iso | en | en_US |
dc.subject | M-matrix | en_US |
dc.subject | spectral radius | en_US |
dc.subject | SOR iterative method | en_US |
dc.subject | regular splitting | en_US |
dc.title | PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR | en_US |
dc.type | student Paper Post Degree | en_US |