PREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU MENGGUNAKAN METODE DEKOMPOSISI

dc.contributor.authorIndah, Novia Handayani Putri
dc.contributor.supervisorFatayat, Fatayat
dc.date.accessioned2021-08-24T02:57:21Z
dc.date.available2021-08-24T02:57:21Z
dc.date.issued2020-10
dc.description.abstractRiau University Library has a number of visitors that vary each year. The uncertainty number of visitors within a year as well as the lack of infrastructure in Riau University Library, therefore a system to predict number of visitors each year is required to improve its facilities and services. This thesis describes the process of predicting the number of visitors to the Library of Riau University using the Decomposition Method. The research was conducted by analyzing the data requirements, collecting data and predicting the decomposition method. In the decomposition method, there are four calculation stages in the decomposition method, namely finding the value of the Trend, Seasonal Index, and Cyclic Variation, and the error value. In the system design stage, there are three diagrams used, namely Use Case, Class Diagram, and Activity Diagram. Manual calculations and system testing are carried out to produce the same output, so that the resulting predictions can be said to be valid.en_US
dc.description.sponsorshipJurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10133
dc.language.isoenen_US
dc.subjectDecomposition Methoden_US
dc.subjectPrediction of the Number of Visitorsen_US
dc.subjectInformation Systemsen_US
dc.titlePREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU MENGGUNAKAN METODE DEKOMPOSISIen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
NOVIA Handayani Putri I._compressed.pdf
Size:
206.11 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections