ANALISA POLA BELANJA KONSUMEN MENGGUNAKAN MOTODE ALGORITMA APRIORI BERBASIS WEB (STUDI KASUS : BISNIS KULINER SUNRICE PEKANBARU)

dc.contributor.authorJunika, Renita
dc.contributor.supervisorFitriansyah, Aidil
dc.date.accessioned2023-03-14T02:45:26Z
dc.date.available2023-03-14T02:45:26Z
dc.date.issued2022-12
dc.description.abstractData mining is an activity of collecting and processing large data that is used to produce useful information. The data processed in data mining uses a technique that combines data analysis methods with existing algorithms in data mining. Data processing can be used in any aspect of the field, including in the culinary field. Sunrice Pekanbaru is a culinary business that is growing and already has a lot of sales transaction data. The data can be processed using an apriori algorithm by applying the existing association rules in data mining. Existing data from the results of consumer spending patterns can be analyzed using the market basket analysis method. The results of the data processing can be used as a source of information for the marketing in the culinary business of Sunrice Pekanbaru because it can find trends in the combination of itemsets from menus that are frequently purchased by customers.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10896
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectData Miningen_US
dc.subjectSunrice Pekanbaruen_US
dc.subjectApriori Algorithmen_US
dc.subjectAssociation Rulesen_US
dc.subjectMarket Basket Analysisen_US
dc.subjectItemsetsen_US
dc.titleANALISA POLA BELANJA KONSUMEN MENGGUNAKAN MOTODE ALGORITMA APRIORI BERBASIS WEB (STUDI KASUS : BISNIS KULINER SUNRICE PEKANBARU)en_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Renita Junika_compressed.pdf
Size:
320.64 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections