METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

dc.contributor.authorPurnama, Yuli Syafti
dc.date.accessioned2016-04-27T04:33:56Z
dc.date.available2016-04-27T04:33:56Z
dc.date.issued2016-04-27
dc.description.abstractThis article discusses the family of Chebyshev-Halley iterative method with two parameters obtained through a linear combination of the Newton methods with one parameter. Analytically it is shown that this method of order three for any value of the two parameters. If the value of the rst parameter is equal one and the value of the second parameter can be determined appropriately, so that this method is of order four. Furthermore, the computational test shows that the discussed method is better than Chebyshev method, Halley method and Super Halley method in terms of the error produced in obtaining the estimated root.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8318
dc.language.isoenen_US
dc.subjectNewton methoden_US
dc.subjectChebyshev-Halley methoden_US
dc.subjectorder of convergenceen_US
dc.subjectnon- linear equationen_US
dc.titleMETODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEARen_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
YULI SAFITRI.pdf
Size:
663.66 KB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections