METODE RIDGE REGRESSION DALAM MENGATASI DAMPAK MULTIKOLINEARITAS PADA PRODUK DOMESTIK REGIONAL BRUTO PROVINSI RIAU

dc.contributor.authorKurniawan, Angga
dc.contributor.supervisorEfendi, Rustam
dc.date.accessioned2021-10-21T02:08:16Z
dc.date.available2021-10-21T02:08:16Z
dc.date.issued2021-04
dc.description.abstractMultiple linear regressions are analytical methods used to determine the relationship between a variable and another. One of the assumptions in multiple linear regression analysis is the absence of multicolinearity in the regression model. If there is a multicolinearity problem, there are several ways that can be used by using the ridge regression method which is a modification of the smallest squared method by adding the a bias constanta c. This study aims to suspect ridge regression parameters using Hoerl, Kennard & Baldwin and Lawless &Wang methods to address multicolinearity problems in the analysis of economic factors in Riau Province. The factors tested in this study are the oil and gas sector into gross regional domestic product commodities, other factors namely exports, consumer price index and rupiah exchange rate. In practice done by comparing two methods of bias rated values Hoerl, Kennard & Baldwin and metohods Lawless & Wang. . The study showed that there is at least one ridge regression method that has MSE, smaller and and value, adjusted larger than Hoerl Kennard & Baldwin method, is obtained Lawless & Wang ridge regression method with bias = 0,288.en_US
dc.description.sponsorshipJurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10290
dc.language.isoenen_US
dc.subjectMultiple linear regressionen_US
dc.subjectmulticolinearityen_US
dc.subjectridge regressionen_US
dc.subjectHoerl Kennard & Baldwin methoden_US
dc.subjectLawless & Wang methoden_US
dc.titleMETODE RIDGE REGRESSION DALAM MENGATASI DAMPAK MULTIKOLINEARITAS PADA PRODUK DOMESTIK REGIONAL BRUTO PROVINSI RIAUen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIKEL_ANGGA_KURNIAWAN_compressed.pdf
Size:
263.76 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections