ANALISIS SPASIAL TINGKAT KESEJAHTERAAN DI INDONESIA MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION
dc.contributor.author | Reskia, Amanda | |
dc.contributor.supervisor | Harison, Harison | |
dc.date.accessioned | 2022-07-27T03:01:50Z | |
dc.date.available | 2022-07-27T03:01:50Z | |
dc.date.issued | 2022-02 | |
dc.description.abstract | Geographically Weighted Logistic Regression (GWLR) is a method of combining Geographically Weighted Regression (GWR) with logistic regression which is applied to spatial data. The purpose of this research to determine model on community welfare using GWLR and find factors that influence the possibility of increasing the welfare status of each Province in Indonesia 2019. The variables used are total manpower, rate of GRDP, PMWand LFPR. In the response variable, the level of welfare as measured by the human development index (HDI) is in the binary category, namely 0 and 1 following the Bernoulli distribution. The results showed that the GWLR model with the Adaptive Gaussian Kernel function was better than the logistic regression model with the smallest Akaike Information Criterion (AIC) of 37.97. | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.citation | Perpustakaan | en_US |
dc.identifier.issn | Elfitra | |
dc.identifier.uri | https://repository.unri.ac.id/handle/123456789/10603 | |
dc.language.iso | en | en_US |
dc.publisher | Elfitra | en_US |
dc.subject | Human Development Index (HDI) | en_US |
dc.subject | Geographically Weighted LogisticRegression (GWLR) | en_US |
dc.subject | Akaike Information Criterion (AIC) | en_US |
dc.title | ANALISIS SPASIAL TINGKAT KESEJAHTERAAN DI INDONESIA MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- AMANDA RESKIA_compressed.pdf
- Size:
- 208.68 KB
- Format:
- Unknown data format
- Description:
- artikel
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: