PERAMALAN HARGA GABAH DAN BERAS BULANAN DI INDONESIA DENGAN METODE ARIMA DAN METODE HOLT-WINTERS

dc.contributor.authorFadliansyah, Hery
dc.contributor.authorBustami, Bustami
dc.date.accessioned2025-01-22T03:18:42Z
dc.date.available2025-01-22T03:18:42Z
dc.date.issued2024-01
dc.description.abstractThe Autoregressive Integrated Moving Average (ARIMA) method is a method that combines Autoregressive and Moving Average forecasting models with differencing, generally expressed as ARIMA(𝑝, 𝑑, 𝑞). The Holt-Winters method or Triple Exponential Smoothing is a smoothing method based on three smoothing parameters, each element, namely α (level), β (trend smoothing), and γ (seasonal index). The ARIMA and Holt- Winters methods in this research are used for forecasting analysis of monthly prices of grain and rice in Indonesia with data for the period January 2013 to July 2022. The study shows that forecasting using the ARIMA method is better than the Holt-Winters method in this research based on accuracy values smaller RMSE
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau
dc.identifier.citationPerpustakaan
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11541
dc.language.isoen
dc.publisherElfitra
dc.subjectAutoregressive Integrated Moving Average
dc.subjectHolt-Winters
dc.subjectgrain and rice prices
dc.titlePERAMALAN HARGA GABAH DAN BERAS BULANAN DI INDONESIA DENGAN METODE ARIMA DAN METODE HOLT-WINTERS
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hery Fadliansyah_compressed.pdf
Size:
317.55 KB
Format:
Unknown data format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections