METODE KUDRATUR LOBATTO UNTUK MENAKSIR KONSTANTA EULER e
dc.contributor.author | Andriani, Tri | |
dc.date.accessioned | 2016-04-27T04:29:50Z | |
dc.date.available | 2016-04-27T04:29:50Z | |
dc.date.issued | 2016-04-27 | |
dc.description.abstract | This article discusses how to use Lobatto Quadrature to approximate the Euler constant e. The process begins by approximating integral of function f(x) = 1=x on interval [n; n+1] using Lobatto Quadrature. Then the approximation of the integral is related to the analytic result of the integral of f(x) = 1=x on the interval [n; n+1]. Approximating the Euler constant e using Lobatto quadrature method are done on some variations of node points. At the end of the discussion the comparison on approximating the Euler constant e using trapezoidal rule, Simpson 1=3 rule, Gauss quadrature rule and Lobatto quadrature method are given | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.other | wahyu sari yeni | |
dc.identifier.uri | http://repository.unri.ac.id/xmlui/handle/123456789/8316 | |
dc.language.iso | en | en_US |
dc.subject | Estimating the Euler constant e | en_US |
dc.subject | Lobatto quadrature method | en_US |
dc.subject | trape- zoidal rule | en_US |
dc.subject | Simpson 1=3 rule | en_US |
dc.subject | Gauss quadrature rule | en_US |
dc.title | METODE KUDRATUR LOBATTO UNTUK MENAKSIR KONSTANTA EULER e | en_US |
dc.type | student Paper Post Degree | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- TRI ANDRIANI.pdf
- Size:
- 864.54 KB
- Format:
- Adobe Portable Document Format
- Description:
- artikel
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: