METODE KUDRATUR LOBATTO UNTUK MENAKSIR KONSTANTA EULER e

dc.contributor.authorAndriani, Tri
dc.date.accessioned2016-04-27T04:29:50Z
dc.date.available2016-04-27T04:29:50Z
dc.date.issued2016-04-27
dc.description.abstractThis article discusses how to use Lobatto Quadrature to approximate the Euler constant e. The process begins by approximating integral of function f(x) = 1=x on interval [n; n+1] using Lobatto Quadrature. Then the approximation of the integral is related to the analytic result of the integral of f(x) = 1=x on the interval [n; n+1]. Approximating the Euler constant e using Lobatto quadrature method are done on some variations of node points. At the end of the discussion the comparison on approximating the Euler constant e using trapezoidal rule, Simpson 1=3 rule, Gauss quadrature rule and Lobatto quadrature method are givenen_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8316
dc.language.isoenen_US
dc.subjectEstimating the Euler constant een_US
dc.subjectLobatto quadrature methoden_US
dc.subjecttrape- zoidal ruleen_US
dc.subjectSimpson 1=3 ruleen_US
dc.subjectGauss quadrature ruleen_US
dc.titleMETODE KUDRATUR LOBATTO UNTUK MENAKSIR KONSTANTA EULER een_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
TRI ANDRIANI.pdf
Size:
864.54 KB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections