PENERAPAN FORECASTING PADA PENJUALAN MOBIL SHOWROOM MITSUBISHI MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING

dc.contributor.authorRinaldi, Aldo
dc.contributor.supervisorID, Ibnu Daqiqil
dc.date.accessioned2024-02-23T07:42:50Z
dc.date.available2024-02-23T07:42:50Z
dc.date.issued2023-11
dc.description.abstractPT. Suka Fajar, Pekanbaru district, has a fairly high level of sales in a year, so a sales strategy is needed for the future. Therefore, predictions are made using the Double Exponential Smoothing method, with the results of the research expected to be a decision support for stakeholders in providing product stock for the progress of business processes. The initial data obtained in this study is car sales data from January - December 2022 with a total of 34 items sold at PT. Suka Fajar Pekanbaru. Use of forecasting in Mitsubishi showroom car sales using the Double Exponential Smoothing method with an alpha value of 0.1 to 0.9 produces a different predictive value for each item. This difference is caused by differences in the amount of data each month on each item (car). The Dakar Ultimate 4X4 A/T item produces the smallest MAPE error value with an alpha of 0.6, which is 17% and the prediction result for January 2023 is 9.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11315
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectMobilen_US
dc.subjectShowroomen_US
dc.subjectForecastingen_US
dc.subjectDouble Exponential Smoothingen_US
dc.titlePENERAPAN FORECASTING PADA PENJUALAN MOBIL SHOWROOM MITSUBISHI MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHINGen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Aldo Rinaldi.pdf
Size:
3 MB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections