KLASIFIKASI PENJUALAN SEPEDA MOTOR HONDA MENGGUNAKAN METODE K-NEAREST NEIGHBOR

dc.contributor.authorAprilia, Elsia
dc.contributor.authorAstried, Astried
dc.date.accessioned2019-01-31T02:50:20Z
dc.date.available2019-01-31T02:50:20Z
dc.date.issued2019-01-31
dc.description.abstractThis research aims to classify of motorcycle sales at CV HONDA MAS dealer using the K-nearest neigbor (KNN) classification methods. In the classification process, the atributes used are the type and sale of motorcycles, and the data used is the last six months, from July to December in 2017, six types of motorcycle using as training data and four types of motorcycle as testing that they will get the classification result that the type of motorcycle that is very sellable is the type of BEAT STREET and VARIO 150 CBS. The results obtained from the study are the accuracy of the classification 100% and error 0%, using coufusion matrixen_US
dc.description.sponsorshipJurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/handle/123456789/9594
dc.language.isoenen_US
dc.publisherwahyu sari yenien_US
dc.subjectclassificationen_US
dc.subjectdata miningen_US
dc.subjectk-nearest neighboren_US
dc.titleKLASIFIKASI PENJUALAN SEPEDA MOTOR HONDA MENGGUNAKAN METODE K-NEAREST NEIGHBORen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Repository Elsia Aprilia.pdf
Size:
1.17 MB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections