PERINGKASAN DOKUMEN TUGAS AKHIR SECARA OTOMATIS MENGGUNAKAN METODE TF-IDF DAN K-MEANS

dc.contributor.authorNabilla, Syntia
dc.contributor.supervisorFitriansyah, Aidil
dc.date.accessioned2021-07-08T03:30:55Z
dc.date.available2021-07-08T03:30:55Z
dc.date.issued2020-06
dc.description.abstractUnderstanding the final assignment with multiple pages takes a long time and it’s not efficient sometimes. This research was made to create automatic summarizing. The data used is chapter IV of the final assignment of the student Information System who graduated in 2018.. Process of the text preprocessing is divided into several parts, case folding, filtering, stemming and tokenizing. After the data passed through the text preprocessing process, the data will be weighted using Term Frequency-Inverse Document Frequency (TF-IDF) method. Then the process of grouping can be done by using k-means clustering method. Testing use compression rate showed 89.06% information in the document successfully summarized and testing use silhouette coefficient shows an average value of 0.202920986 with the mean quality of the cluster in the good category. Keywordsen_US
dc.description.sponsorshipJurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10006
dc.language.isoenen_US
dc.subjectCompression Rateen_US
dc.subjectK-Meansen_US
dc.subjectSilhouette Coefficienten_US
dc.subjectText Preprocessingen_US
dc.subjectText Miningen_US
dc.subjectTF-IDF.en_US
dc.titlePERINGKASAN DOKUMEN TUGAS AKHIR SECARA OTOMATIS MENGGUNAKAN METODE TF-IDF DAN K-MEANSen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SYNTIA NABILLA_compressed.pdf
Size:
301.48 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections