Prediksi Prestasi Belajar Siswa Menggunakan Algoritma Naïve Bayes Classfier di SMKN 1 Barumun

dc.contributor.authorNasution, Nurhamimah
dc.contributor.supervisorMahdiyah, Evfi
dc.date.accessioned2023-08-21T03:58:24Z
dc.date.available2023-08-21T03:58:24Z
dc.date.issued2023-06
dc.description.abstractPrediction is an attempt to look at past conditions to predict future conditions. Prediction of student achievement is something that is very important in the world of education that can increase quality graduates. This study aims to implement the Naïve Bayes Classifier Algorithm to predict student achievement for one semester at SMKN 1 Barumun. The data used were 1191 student data, with a ratio of 80% and 20%, with 6 criteria or attributes for student achievement requirements consisting of the average grade of assignments, average midterm scores, average UAS scores, average number of class attendance, average practicum scores and the average attitude value used for the classification process. Tests were carried out using the Confusion Matrix with an accuracy of 96.15%, precision of 94,16% and recall of 100%.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11126
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectNaïve Bayes Classifier Algorithmen_US
dc.subjectConfusion Matrixen_US
dc.subjectPredictionen_US
dc.subjectAchievementen_US
dc.titlePrediksi Prestasi Belajar Siswa Menggunakan Algoritma Naïve Bayes Classfier di SMKN 1 Barumunen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nurhamimah Nasution_compressed.pdf
Size:
163.17 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections