T H E M A X I M A L I D E A L O F L O C A L I Z A T I O N O F R I N G P O L Y N O M I A L O V ER D E D E K I N D D O M A IN

dc.contributor.authorR i a n t i H e l m i, M o n i k a
dc.date.accessioned2012-11-10T04:09:35Z
dc.date.available2012-11-10T04:09:35Z
dc.date.issued2012-11-09
dc.description.abstractLet i? be a Dedekind domain with infinitely many primes and {/) C R[X] a principal prime ideal which is not maximal. Let m be a maximal ideal of R[X] and n be a maximal ideal of R[X]/ (/). Then localization of R[X]/(/) at n is principal if and only if there exist t in such that mi?[X]ni =en_US
dc.identifier.isbn978-979-1222-95-2
dc.identifier.urihttps://repository.unri.ac.id/xmlui/handle/123456789/451
dc.language.isoenen_US
dc.subjectDedekind domain,en_US
dc.subjectlocalizationen_US
dc.subjectmaodmal idealen_US
dc.titleT H E M A X I M A L I D E A L O F L O C A L I Z A T I O N O F R I N G P O L Y N O M I A L O V ER D E D E K I N D D O M A INen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
monika1.PDF
Size:
193.71 KB
Format:
Adobe Portable Document Format
Description:
T H E M A X I M A L I D E A L O F L O C A L I Z A T I O N O F R I N G P O L Y N O M I A L O V ER D E D E K I N D D O M A IN
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: