CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS DAN DBSCAN PADA ANGGARAN PENDAPATAN DAN BELANJA DAERAH DI INDONESIA

dc.contributor.authorRahmadianissa, Thazkia
dc.contributor.supervisorSirait, Haposan
dc.date.accessioned2023-03-16T02:55:04Z
dc.date.available2023-03-16T02:55:04Z
dc.date.issued2022-12
dc.description.abstractThe regional government budget is an annual financial plan that affects the Indonesian economy for one year. Administration of APBD data has not been effectively implemented due to limited human resources. Clustering algorithms are used to group provinces based on regional government budget according to data similarities to facilitate the government in future financial planning. In this study using regional government budget data in 2021 using the k-means and DBSCAN methods. The results of this study using k-means with 2 clusters with cluster 1 contain of 33 provinces and cluster 2 contain of 1 province, that is DKI Jakarta. Meanwhile, using the DBSCAN method with 2 clusters, cluster 1 contain of 30 provinces, cluster 2 contain of 2 provinces there are Central Java and East Java, and 2 noise data, there are DKI Jakarta and West Java.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10905
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectRegional government budgeten_US
dc.subjectclustering algorithmsen_US
dc.subjectk-meansen_US
dc.subjectDBSCANen_US
dc.titleCLUSTERING MENGGUNAKAN ALGORITMA K-MEANS DAN DBSCAN PADA ANGGARAN PENDAPATAN DAN BELANJA DAERAH DI INDONESIAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Thazkia Rahmadianissa_compressed.pdf
Size:
282.64 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections