ANALISIS VOLATILITAS SAHAM PERUSAHAAN MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

dc.contributor.authorMustikawati, Fitri
dc.contributor.supervisorSirait, Haposan
dc.date.accessioned2023-03-02T03:39:39Z
dc.date.available2023-03-02T03:39:39Z
dc.date.issued2022-12
dc.description.abstractThe rate of return is one of the important factors for investors in making decisions when they want to invest. The amount of return obtained can determine the level of price fluctuations over a certain period or can be called volatility. Stock volatility needs to be reviewed to measure how big the level of fluctuation in the price of a stock is, so in this study discussed the analysis of the volatility of PT. AMAG uses the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) method. The results showed that the stock return log data of PT. AMAG has volatility as evidenced by the presence of elements of heteroscedasticity in the Autoregressive Integrated Moving Average (ARIMA) model, so it is necessary to continue with the GARCH model testing to overcome the problem of heteroscedasticity or the residual variance is not constant. The best models obtained are ARIMA (0,0,1) and GARCH (1,1), using these models the results of forecasting the stock price index of PT. AMAG for 30 periods did not differ much from the actual data with a MAPE value of 1.44%.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10875
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectVolatilityen_US
dc.subjectGARCHen_US
dc.subjectARIMAen_US
dc.subjectMAPEen_US
dc.titleANALISIS VOLATILITAS SAHAM PERUSAHAAN MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITYen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fitri Mustikawati_compressed.pdf
Size:
224.75 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections