PENERAPAN REGRESI KOMPONEN UTAMA ROBUST S-ESTIMATOR UNTUK ANALISIS PENGANGGURAN DI KOTA DUMAI

dc.contributor.authorSari, Rizki Ayu Fitrian
dc.contributor.supervisorBustami, Bustami
dc.date.accessioned2021-09-30T06:52:16Z
dc.date.available2021-09-30T06:52:16Z
dc.date.issued2021-02
dc.description.abstractThe least squares method is a method for estimating parameters. This method is not appropriate for data that contains outliers, therefore, a robust regression regression method is used. Robust regression is a regression method that is used when there are outliers that can affect the model. In this study, the robust method used is the S-estimator. This study applies robust S-estimator regression to data containing outliers. A better model is selected based on the RSE and ̅ . The model is applied for the study of the number of unemployed in Dumai City 2006-2019. The independent variables are average length of schooling, net enrollment rate, school enrollment rate, human development index, population growth rate, and the poor. Based on the regression equation used, the study show that the factors affecting the unemployment rate are the average length of schooling and the poor population using the S-estimate regression method.en_US
dc.description.sponsorshipJurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10245
dc.language.isoenen_US
dc.subjectUnemploymenten_US
dc.subjectquadratic term methoden_US
dc.subjectoutlieren_US
dc.subjectrobusten_US
dc.subjectS-estimatoren_US
dc.titlePENERAPAN REGRESI KOMPONEN UTAMA ROBUST S-ESTIMATOR UNTUK ANALISIS PENGANGGURAN DI KOTA DUMAIen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RIZKI AYU FITRIAN SARI_compressed.pdf
Size:
238.48 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections