PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI DAGUM MENGGUNAKAN ATURAN PRIOR NON-INFORMATIF DENGAN K-LOSS FUNCTION DAN ENTROPY LOSS FUNCTION
dc.contributor.author | Sari, Asti Ralita | |
dc.contributor.supervisor | Sirait, Haposan | |
dc.date.accessioned | 2021-10-21T02:11:22Z | |
dc.date.available | 2021-10-21T02:11:22Z | |
dc.date.issued | 2021-04 | |
dc.description.abstract | The parameter estimator discussed is the parameter estimator of the Dagum distribution with the k-loss function and the entropy loss function using the Bayes method. To get the Bayes estimator from the scale parameter of the Dagum distribution, the Jeffrey’s non-informative prior distribution is used based on the maximum likelihood function and the loss function for the k-loss function and the entropy loss function to obtain an efficient estimator. Determinant of the best estimator is done by comparing the variance values generated from each estimator. An estimator that uses the entropy loss function is the best method for estimating the parameters of the Dagum distribution of the data population with efficient conditions met. | en_US |
dc.description.sponsorship | Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.other | wahyu sari yeni | |
dc.identifier.uri | https://repository.unri.ac.id/handle/123456789/10291 | |
dc.language.iso | en | en_US |
dc.subject | Parameter estimator | en_US |
dc.subject | Dagum distribution | en_US |
dc.subject | Bayes method | en_US |
dc.subject | Jeffrey’s prior | en_US |
dc.subject | loss function | en_US |
dc.title | PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI DAGUM MENGGUNAKAN ATURAN PRIOR NON-INFORMATIF DENGAN K-LOSS FUNCTION DAN ENTROPY LOSS FUNCTION | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Asti Ralita Sari_1603137310_compressed.pdf
- Size:
- 216.56 KB
- Format:
- Unknown data format
- Description:
- artikel
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: