PARTISI BILANGAN p(5n + 4); p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11
dc.contributor.author | Akhyar, Abdul | |
dc.contributor.author | Syamsudhuha | |
dc.contributor.author | Gemawati, Sri | |
dc.date.accessioned | 2016-05-23T03:54:20Z | |
dc.date.available | 2016-05-23T03:54:20Z | |
dc.date.issued | 2016-05-23 | |
dc.description.abstract | A partition of a positive integer is the representation of the positive integer its self or sums of the other positive integers, while the partition function is the number of partitions. This article disscusses a simple proof of partition numbers p(5n + 4), p(7n + 5) and p(11n + 6) consecutively congruent modulo 5, 7, and 11. The proof for modulo 5 and 7 are carried out via Jacobi identities, while for modulo 11 via Euler and Jacobi identities. | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.other | wahyu sari yeni | |
dc.identifier.uri | http://repository.unri.ac.id/xmlui/handle/123456789/8416 | |
dc.language.iso | en | en_US |
dc.subject | Partition number | en_US |
dc.subject | modulo | en_US |
dc.subject | generating function | en_US |
dc.subject | Euler and Jacobi identities | en_US |
dc.title | PARTISI BILANGAN p(5n + 4); p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11 | en_US |
dc.type | student Paper Post Degree | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- artikel_Akhyar Akhyar.pdf
- Size:
- 621.64 KB
- Format:
- Adobe Portable Document Format
- Description:
- artikel
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: