PARTISI BILANGAN p(5n + 4); p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11

dc.contributor.authorAkhyar, Abdul
dc.contributor.authorSyamsudhuha
dc.contributor.authorGemawati, Sri
dc.date.accessioned2016-05-23T03:54:20Z
dc.date.available2016-05-23T03:54:20Z
dc.date.issued2016-05-23
dc.description.abstractA partition of a positive integer is the representation of the positive integer its self or sums of the other positive integers, while the partition function is the number of partitions. This article disscusses a simple proof of partition numbers p(5n + 4), p(7n + 5) and p(11n + 6) consecutively congruent modulo 5, 7, and 11. The proof for modulo 5 and 7 are carried out via Jacobi identities, while for modulo 11 via Euler and Jacobi identities.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8416
dc.language.isoenen_US
dc.subjectPartition numberen_US
dc.subjectmoduloen_US
dc.subjectgenerating functionen_US
dc.subjectEuler and Jacobi identitiesen_US
dc.titlePARTISI BILANGAN p(5n + 4); p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11en_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
artikel_Akhyar Akhyar.pdf
Size:
621.64 KB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections