MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

dc.contributor.authorKurniati, Rini
dc.contributor.authorSugiarto, Sigit
dc.contributor.authorEfendi, Rustam
dc.date.accessioned2014-03-25T07:54:04Z
dc.date.available2014-03-25T07:54:04Z
dc.date.issued2014-03-25
dc.description.abstractThis paper discussed about three the ratio-product estimators for mean population in the stratified random sampling. It is combinations of ratio estimator and product estimator in stratified random sampling. This paper is a review from the paper of Tailor et.al. [Communications of the Korean Statistical Society 18:111-118]. The estimators discussed are the combination of ratio-product estimator, combination of ratio-product estimator using coefficient of variation and combination of ratio-product estimator using coefficient of kurtosis. All of estimators are bias estimator. Then the mean square error (MSE) of each estimator is evaluated. Furthermore, the MSE of each estimator is compared. This comparison shows that the combination of ratio-product estimator is the most efficient, that is with the smallest MSEen_US
dc.description.sponsorshipSugiarto, Sigit, Efendi, Rustamen_US
dc.identifier.otherRangga Dwijunanda Putra
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/5887
dc.language.isootheren_US
dc.subjectbiasen_US
dc.subjectcoefficient of variationen_US
dc.subjectcoefficient of kurtosisen_US
dc.subjectratio-product estimatoren_US
dc.subjectstratified random samplingen_US
dc.subjectmean square erroren_US
dc.titleMEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATAen_US
dc.typeOtheren_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
KARYA ILMIAH RINI KURNIATI.pdf
Size:
402.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections