PEMODELAN JUMLAH KASUS KEMATIAN BAYI DI KABUPATEN KUANTAN SINGINGI MENGGUNAKAN REGRESI BINOMIAL NEGATIF
dc.contributor.author | Sari, Luci Manda | |
dc.contributor.supervisor | Efendi, Rustam | |
dc.date.accessioned | 2023-06-21T02:35:41Z | |
dc.date.available | 2023-06-21T02:35:41Z | |
dc.date.issued | 2023-04 | |
dc.description.abstract | Infant mortality is one of the commonly used mortality indicators in Indonesia. Cases of infant mortality reflect the level of social welfare and health status of a nation for the realization of health development in a country. One of the ways to reveal the high number of infant mortality cases is by knowing the most significant factors that cause infant mortality. The results obtained from this study experienced overdispersion in Poisson regression, so that in the analysis using negative binomial regression, a significant variable was obtained, namely the number of medical personnel with the best AIC in negative binomial regression for a significant variable in reduction II with an AIC value of 60.42 | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.citation | Perpustakaan | en_US |
dc.identifier.other | Elfitra | |
dc.identifier.uri | https://repository.unri.ac.id/handle/123456789/11031 | |
dc.language.iso | en | en_US |
dc.publisher | Elfitra | en_US |
dc.subject | Infant Mortality Cases | en_US |
dc.subject | Poisson Regression | en_US |
dc.subject | Overdispersion | en_US |
dc.subject | Negative Binomal Regression | en_US |
dc.title | PEMODELAN JUMLAH KASUS KEMATIAN BAYI DI KABUPATEN KUANTAN SINGINGI MENGGUNAKAN REGRESI BINOMIAL NEGATIF | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- LUCI MANDA SARI_compressed.pdf
- Size:
- 223.36 KB
- Format:
- Unknown data format
- Description:
- artikel
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: