ANALISIS PENGANGGURAN TERBUKA DI INDONESIA MENGGUNAKAN MODEL REGRESI SPASIAL

dc.contributor.authorAfrianto, Hendah
dc.contributor.supervisorSirait, Haposan
dc.date.accessioned2023-10-31T04:50:14Z
dc.date.available2023-10-31T04:50:14Z
dc.date.issued2023-07
dc.description.abstractUnemployment is one of the problems in employment that is often faced by every country, especially developing countries like Indonesia. The existence of the Covid-19 pandemic in Indonesia resulted in the open unemployment rate increasing rapidly from previous years. Total population, TPAK, minimum wage, HDI, and poverty are some of the variables that can provide an overview of the open unemployment rate in Indonesia. For this reason, tests were carried out on these variables. The data used in this study uses BPS data, namely the indicator of the Open Unemployment Rate in Indonesia. Analysis was performed using spatial regression with the Spatial Autoregressive (SAR) model. Based on the SAR model, there are 2 variables that have a significant effect on the open unemployment rate, namely the population variable which has a positive effect and TPAK which has a negative effect.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11195
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectOpen unemployment rateen_US
dc.subjectspatial regressionen_US
dc.subjectspatial autoregressive (SAR)en_US
dc.titleANALISIS PENGANGGURAN TERBUKA DI INDONESIA MENGGUNAKAN MODEL REGRESI SPASIALen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hendah Afrianto_compressed.pdf
Size:
336.94 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections