BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

dc.contributor.authorSulastri, Neli
dc.date.accessioned2016-02-04T04:43:46Z
dc.date.available2016-02-04T04:43:46Z
dc.date.issued2016-02-04
dc.description.abstractThis article discusses the iterative method by combining two Newton’s methods where the second step of Newton’s method is given a weighted function. By pro- viding specific requirements for this weighting function, it is shown using Taylor expansion and geometric series that the iterative method have third and fourth or- der of convergence. By choosing specific weighting functions, some known iterative methods are found. Then some numerical simulations are performed to compare the number of iterations of each discussed methoden_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/7912
dc.language.isoenen_US
dc.subjectNewton’s methoden_US
dc.subjectnonlinear equationen_US
dc.subjectorder of convergenceen_US
dc.subjectiterative methodsen_US
dc.titleBEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEARen_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIKEL NELI.pdf
Size:
699.38 KB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections