METODE HALLEY DUA-TITIK BERORDE ENAM UNTUK AKAR SEDERHANA

dc.contributor.authorAini, Sifaul
dc.date.accessioned2018-03-07T09:08:15Z
dc.date.available2018-03-07T09:08:15Z
dc.date.issued2018-03-07
dc.description.abstractThis article discusses the modifications of Halley’s method using Taylor’s expansion of second order to solve nonlinear equations. The modification of Halley’s method is divided into two cases. Both of modifications of Halley’s methods have order of convergence six and need four function evaluations per iteration. Furthermore, the computational results show that the method converges faster in obtaining a simple root of the nonlinear equations compared to Newton’s and Halley’s methoden_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/xmlui/handle/123456789/9291
dc.language.isoenen_US
dc.subjectNewton’s methoden_US
dc.subjectHalley’s methoden_US
dc.subjecta simple rooten_US
dc.subjectorder of convergenceen_US
dc.titleMETODE HALLEY DUA-TITIK BERORDE ENAM UNTUK AKAR SEDERHANAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sifaul Aini.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections