METODE HALLEY DUA-TITIK BERORDE ENAM UNTUK AKAR SEDERHANA
dc.contributor.author | Aini, Sifaul | |
dc.date.accessioned | 2018-03-07T09:08:15Z | |
dc.date.available | 2018-03-07T09:08:15Z | |
dc.date.issued | 2018-03-07 | |
dc.description.abstract | This article discusses the modifications of Halley’s method using Taylor’s expansion of second order to solve nonlinear equations. The modification of Halley’s method is divided into two cases. Both of modifications of Halley’s methods have order of convergence six and need four function evaluations per iteration. Furthermore, the computational results show that the method converges faster in obtaining a simple root of the nonlinear equations compared to Newton’s and Halley’s method | en_US |
dc.description.sponsorship | Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau | en_US |
dc.identifier.other | wahyu sari yeni | |
dc.identifier.uri | https://repository.unri.ac.id/xmlui/handle/123456789/9291 | |
dc.language.iso | en | en_US |
dc.subject | Newton’s method | en_US |
dc.subject | Halley’s method | en_US |
dc.subject | a simple root | en_US |
dc.subject | order of convergence | en_US |
dc.title | METODE HALLEY DUA-TITIK BERORDE ENAM UNTUK AKAR SEDERHANA | en_US |
dc.type | Article | en_US |