PENERAPAN DATA MINING DALAM PREDIKSI PENGANGGURAN BERDASARKAN TINGKAT PENDIDIKAN MENGGUNAKAN ALGORITMA BACKPROPAGATION NEURAL NETWORK

dc.contributor.authorHasanah, Hasanah
dc.contributor.supervisorIndra, Zul
dc.date.accessioned2024-03-05T08:54:00Z
dc.date.available2024-03-05T08:54:00Z
dc.date.issued2023-11
dc.description.abstractUnemployment is still widely found in Riau province. There are many factors that influence unemployment, one of which is the level of education completed. Therefore, unemployment prediction is needed to overcome the problem. Prediction is done by using backpropagation neural network method. The purpose of this research is to determine the best model in predicting unemployment based on education in Riau. The best model is determined from the evaluation results of the smallest mean squared error (MSE) and mean absolute percentage error (MAPE) values. From the test results, the best architecture model is obtained, namely model C with an architecture of 8 input layers, 4 hidden neurons, 1 output layer (8-4-1) with 0.01 learning rate. From the evaluation result, model C produces MSE value of 0.0027 and MAPE value of 16.99%. Thus, model C is able to predict unemployment based on education level in Riau well and can be used for further prediction of unemployment based on education.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11338
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectBackpropagation Neural Networken_US
dc.subjectMAPEen_US
dc.subjectMSEen_US
dc.subjectUnemploymenten_US
dc.subjectPredictionen_US
dc.titlePENERAPAN DATA MINING DALAM PREDIKSI PENGANGGURAN BERDASARKAN TINGKAT PENDIDIKAN MENGGUNAKAN ALGORITMA BACKPROPAGATION NEURAL NETWORKen_US
dc.title.alternativeElfitraen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
hasanah_compressed.pdf
Size:
365.11 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections