PREDIKSI PRESTASI AKADEMIK MAHASISWA FMIPA UNIVERSITAS RIAU MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERBASIS WEB

dc.contributor.authorLattivah, Zakyatul
dc.contributor.supervisorBahri, Zaiful
dc.date.accessioned2021-10-19T03:58:10Z
dc.date.available2021-10-19T03:58:10Z
dc.date.issued2021-03
dc.description.abstractThis study aims to predict the academic achievement of FMIPA Riau University students using the K-Nearest Neighbor algorithm. The results of the predictions are achievement in terms of the category of cumulative grade point average (IPK) "High" or "Low", this is because new students cannot know their estimated future achievements, so with this prediction system new students can see their achievement predictions. in the future (sixth semester) by looking at the school of origin majors, the average national exam, college motivation, and work at the beginning of college which can be used as a reference and motivation for maximum achievement. The system is designed using the PHP programming language and the database server uses MySQL and the system design uses UML. The comparison of training data and test data is 70%: 30%. The results obtained from this study get an average level of accuracy of 80%.en_US
dc.description.sponsorshipJurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10286
dc.language.isoenen_US
dc.subjectNearest Neighboren_US
dc.subjectPredictionen_US
dc.subjectAcademic Achievementen_US
dc.subjectData Miningen_US
dc.titlePREDIKSI PRESTASI AKADEMIK MAHASISWA FMIPA UNIVERSITAS RIAU MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERBASIS WEBen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ZAKYATULLATTIVAH_compressed.pdf
Size:
221.27 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections