SISTEM PENDUKUNG KEPUTUSAN REKOMENDASI TEMPAT WISATA DI SUMATERA BARAT MENGGUNAKAN METODE ELECTRE

dc.contributor.authorRarasti, Romi
dc.contributor.authorMahdiyah, Evfi
dc.date.accessioned2019-07-22T08:56:15Z
dc.date.available2019-07-22T08:56:15Z
dc.date.issued2019-07-22
dc.description.abstractWest Sumatra Province is one of the tourist destinations in Indonesia which is visited by many local and foreign tourists. The number of tourist visits to West Sumatra has increased with the number of domestic tourists amounting to 6.00% from 7,343,282 people in 2016 to 7,783,876 people in 2017. While for foreign tourist visits increased by 13.34% from 49,686 people in 2016 to 56,313 people in 2017. The researcher created a Decision Support System (DSS) Tourist Places in West Sumatra Using the ELECTRE Method. This system created using the PHP programming language MySQL database and uses the UML modeling language as a system design. The researcher uses three criteria as attributes for data processing, namely, costs, facilities and infrastructure. This system uses six categories of tourist destination choices in West Sumatra, namely, historical tourism, beach tourism, lake tourism, mountain tourism, nature tourism and waterfall tourism. This research produces a web application that provides information on tourist attractions recommendations to visitors in accordance with input criteria made by visitorsen_US
dc.description.sponsorshipJURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS RIAUen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/9755
dc.language.isoenen_US
dc.publisherwahyu sari yenien_US
dc.subjectELECTREen_US
dc.subjectTourist Recommendationsen_US
dc.subjectWest Sumateraen_US
dc.subjectDecision Support Systemen_US
dc.titleSISTEM PENDUKUNG KEPUTUSAN REKOMENDASI TEMPAT WISATA DI SUMATERA BARAT MENGGUNAKAN METODE ELECTREen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
rarasti.pdf
Size:
4.95 MB
Format:
Unknown data format
Description:
artikel

Collections