PENGEMBANGAN LEMA HARUKI PADA ELIPS

dc.contributor.authorUtami, Nurul Andayani
dc.date.accessioned2022-03-15T02:39:47Z
dc.date.available2022-03-15T02:39:47Z
dc.date.issued2021-10
dc.description.abstractThis article discusses the constancy of Haruki's lemma on the ellipse. Given two nonintersecting chords AB and CD on an ellipse and a variable point P on the arc AB remote from points C and D, let E and F be the intersections of chords PC;AB and PD;AB respectively. The value of AE · BF=EF does not depend on the position of P. The proof is presented by geometric transformations, using the coordinates of points on the ellipse and using the theorem of the intersection of two chords on the ellipse. Haruki's lemma is applied to an ellipse centered at O(0; 0) with an arbitrary chord AB, a horizontal chord AB and a vertical chord AB, so that the Haruki's lemma constant on the ellipse is as follows: AE · BF EF = (√ (xe − xa)2 + (ye − ya)2 ) · (√ (xf − xb)2 + (yf − yb)2 ) √ (xf − xe)2 + (yf − ye)2en_US
dc.description.sponsorshipJurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10489
dc.language.isoenen_US
dc.publisherperpustakaan URen_US
dc.subjectGeometrical coordinateen_US
dc.subjectintersection of two chords of an ellipseen_US
dc.subjectHaruki's lemmaen_US
dc.subjectHaruki's lemma on ellipseen_US
dc.titlePENGEMBANGAN LEMA HARUKI PADA ELIPSen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nurul Andayani Utami_compressed.pdf
Size:
250.42 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections