ALTERNATIF PROSES DIAGONALISASI MATRIKS BILANGAN FUZZY TRIANGULAR

dc.contributor.authorSibarani, David Rakel
dc.date.accessioned2024-02-28T02:02:53Z
dc.date.available2024-02-28T02:02:53Z
dc.date.issued2023-11
dc.description.abstractThis article discusses the alternative diagonalization process on the triangular fuzzy number matrix of size n×n in parametric form. Many forms of arithmetic operations have been given by the author, especially triangular fuzzy numbers. For addition, subtraction and scalar multiplication operations there is not much difference while for multiplication, division and inverse there are many ways. However, the algebraic operations offered have some drawbacks for example, for any triangular fuzzy number ˜p = (p, α, β), does not necessarily apply ˜p(r) ⊗ 1 ˜p(r) = ˜i(r) . In this article, an alternative arithmetic operation will be used for the multiplication, division and inverse operations of triangular fuzzy numbers by using the midpoint concept. This midpoint concept is then used to determine the eigenvalues and eigenvectors as well as the inverse matrix of triangular fuzzy numbers. Meanwhile, to determine the cofactor of the triangular fuzzy number matrix using ˜ Cij(r) = [−1,−1]i+j ⊗ ˜Mij(r).en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11324
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectDiagonalization of triangular fuzzy number matrixen_US
dc.subjecteigenvalueen_US
dc.subjecteigenvectoren_US
dc.subjectcofactor of triangular fuzzy number matrixen_US
dc.subjectinverse of triangular fuzzy number matrixen_US
dc.titleALTERNATIF PROSES DIAGONALISASI MATRIKS BILANGAN FUZZY TRIANGULARen_US
dc.title.alternativeElfitraen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
David Rakel Sibarani_compressed.pdf
Size:
206.78 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections