SMALL AREA ESTIMATION DENGAN METODE EBLUP FAY-HERRIOT PADA TINGKAT KEMISKINAN DI PROVINSI SUMATERA UTARA

dc.contributor.authorNainggolan, Damianus
dc.contributor.supervisorBustami, Bustami
dc.date.accessioned2022-01-17T02:44:59Z
dc.date.available2022-01-17T02:44:59Z
dc.date.issued2021-07
dc.description.abstractNational socio-economic survey in March 2019 showed that the number of poor people in North Sumatra Province was 1,282 million people or 8,83 percent of the total population. The number of poor people and the percentage of poor people are obtained by direct estimation based on the survey conducted. Direct estimation in a small area has a poor accuracy because the estimator have a large variance. The method that can be used to solve this problem is indirect estimation with Small Area Estimation (SAE). This study uses SAE with the Empirical Best Linear Unbiased Prediction (EBLUP) Fay-Herriot method to estimate the parameter of the poverty level in North Sumatra Province by city. The data used is the poverty percentage of 33 cities using seven co-variables namely the human development index, gross enrollment ratio for elementary, junior, high school, and college, income per capita, and life expectancy in North Sumatra Province obtained from the survey results from the BPS. This study shows that SAE with the EBLUP Fay-Herriot method produces a better estimation value than the direct estimationen_US
dc.description.sponsorshipProgram Studi S1 Statistika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10384
dc.language.isoenen_US
dc.publisherperpustakaan URen_US
dc.subjectDirect estimationen_US
dc.subjectsmall area estimationen_US
dc.subjectempirical best linear unbiased predictionen_US
dc.subjectFay-Herriot modelen_US
dc.titleSMALL AREA ESTIMATION DENGAN METODE EBLUP FAY-HERRIOT PADA TINGKAT KEMISKINAN DI PROVINSI SUMATERA UTARAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Damianus Nainggolan_compressed.pdf
Size:
304.63 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections