METODE ITERASI DUA LANGKAH DENGAN ORDE KEKONVERGENAN ENAM UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

dc.contributor.authorALEXANDER, ALEXANDER
dc.date.accessioned2022-06-14T03:41:11Z
dc.date.available2022-06-14T03:41:11Z
dc.date.issued2021-12
dc.description.abstractThis article discusses a two-step iterative method to solve a nonlinear equation. The method is obtained by substituting the quadratic formula into Taylor expansion, then the second derivative that appears in the formula is estimated using a cubic polynomial. Analytically it is showed, using the Taylor expansion, geometric series and binomial series that the iterative method has the convergence of order six and requires four function evaluations for each iteration. The proposed method is optimal and based on its efficiency index 1.57. Numerical computations show that the new method is comparable to the other discussed six-order methods.en_US
dc.description.sponsorshipJurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10513
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectIterative methodsen_US
dc.subjectnonlinear equationen_US
dc.subjectorder convergenceen_US
dc.subjectNewton’s methoden_US
dc.titleMETODE ITERASI DUA LANGKAH DENGAN ORDE KEKONVERGENAN ENAM UNTUK MENYELESAIKAN PERSAMAAN NONLINEARen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Alexander_compressed.pdf
Size:
193.41 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections