PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PADA PROGRAM STUDI SISTEM INFORMASI UNIVERSITAS RIAU

dc.contributor.authorNatasha, Syafira
dc.contributor.supervisorAstried, Astried
dc.date.accessioned2022-08-26T03:20:54Z
dc.date.available2022-08-26T03:20:54Z
dc.date.issued2022-04
dc.description.abstractStudent graduation on time is one of the assessments or benchmarks in the college accreditation process. Higher education accreditation assessment is carried out by the National Accreditation Board for Higher Education. The higher the accreditation value, the higher the quality of the university. Graduation rate is very important, it is necessary to determine student graduation. The study focused on predicting student graduation by data mining using the K-Nearest Neighbor algorithm and the accuracy rate of algorithms measured using the Confusion Matrix. This studied used data from students of the Information Systems Study Program of the University of Riau who had graduated from 2014 to 2016 as many as 148 data. The data was shared using K-FOLD to predict student graduation with the highest accuracy rate of 100% on K-FOLD 9.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10661
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectConfusion Matrixen_US
dc.subjectData Miningen_US
dc.subjectGraduation Predictionen_US
dc.subjectK-Nearest Neighboren_US
dc.titlePREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PADA PROGRAM STUDI SISTEM INFORMASI UNIVERSITAS RIAUen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Syafira Natasha_compressed.pdf
Size:
257.88 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections