Browsing by Author "suganda, Regi"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item ELEKTRODA KARBON AKTIF BERBAHAN DASAR BIOMASSA DAUN PANDAN DURI DENGAN PENAMBAHAN KARBON NANOTUBE UNTUK ELEKTRODA SUPERKAPASITOR(Elfitra, 2023-06) suganda, RegiSupercapacitors are renewable energy storage devices consisting of electrodes, electrolytes, current collectors and separators. Electrodes are one of the most important components in a supercapacitorbecause they are made of nanoscale materials that have a high surface area and porosity. This study used the leaves of the pandanus tectorius fiber with the addition of 10% and 15% carbon nanotubes with respective sample codes, namely DPD-0, DPD-10, and DPD-15. The manufacture of carbon electrodes was carried out by several processes, namely pra-carbonization process, chemical activation with KOH activator and addition of carbon nanotube, carbonization process using N2 gas at 600°C and physical activation using CO2 gas at 800°C. The highest density shrinkage value is owned by the DPD-15 sample, which is 56,28%. The DPD carbon electrode contains functional groups O-H, C-H, C≡C, C=C, C-O amd has a semicrystalline structure characterized by the presence of peaks (002) and (100) at angles of 24°-25° and 44°-45°. The nanofiber structure DPD-15 more than DPD-0 with a carbon element 78,32% and oksigen element 16,25%. Electrochemical analysis of supercapacitor cells using the Cycliv voltammetry and Galvanostatic Charge-Dischage methods with 1 M H2SO4 electrolyte resulted in the highest specific capacitance values belonging to the DPD-15 sample of 369,77 F/g and 321,33 F/g. Based on the physical and electrochemical properties of DPD biomass-based supercapacitor cell, the addition of carbon nanotube to the carbon matrix might improve the performance of supercapacitor cell electrodes.