Browsing by Author "Syamsudhuha"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item METODE ANALISIS HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL LINEAR(2016-02-04) Darno, Azharra Fortuna; Syamsudhuha; AziskhanThis article discusses the application of homotopy analysis method to solve linear Volterra and Fredholm integral equations of the rst and second kind. To see the advantages, this method is applied to the four examples of linear Volterra and Fred- holm integral equation. The results show that the convergence of the method is very fast to approximate the exact solution.Item METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS(2013-03-13) W.A, Mardhika; Syamsudhuha; AziskhanThe aim of this paper is to solve a heat equation by using Interval Finite Difference method. The method is the modified form of Finite Difference Method which includes the error terms of the corresponding conventional method. It gives a solution in interval form which consists all of the possible numerical errorItem METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR(2016-02-04) Syafriani, Adek Putri; Syamsudhuha; ZulkarnainThis article discusses the iterative method for solving a system of linear equations using KSOR method, which is the modification of Successive over Relaxation (SOR) method. The main difference between KSOR method and SOR method is lying on the value of relaxation parameter allowed. Furthermore, using two systems of linear equations with different sizes, the comparisons between the KSOR method, Gauss- Seidel method and Successive over-Relaxation (SOR) method are carried out. The results show that KSOR method is better than Gauss-Seidel method and comparable than Successive over Relaxation (SOR) method.Item METODE MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN POISSON DUA DIMENSI DENGAN METODE BEDA HINGGA(2016-04-27) Taufik, Muhammad; Syamsudhuha; ZulkarnainThis article discusses the application of multigrid method to solve systems of linear equations obtained from two-dimensional Poisson equation in the discretization by finite difference method. This multigrid method is used another iteration method, that is the method of Gauss-Seidel iteration which acts as a smoothing operator.Item MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK MENYELESAIKAN SISTEM PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA(2016-04-26) Caniago, Serli Novia; Syamsudhuha; Putra, SupriadiThis article discusses the modi ed homotopy perturbation method based on a Taylor expansion of the kernel of system Volterra integral equations of the second kind. This method can only be applied to the system Volterra integral equations of the second kind having kernel is mutually independent. By comparing the approximated solution to the exact solution through an example, it concludes that the modi ed homotopy perturbation method is better than the homotopy method.Item MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN(2016-02-04) Desri, Handico Z; Syamsudhuha; ZulkarnainThis article discusses the modified homotopy perturbation methods based on Newton method, by combining techniques and homotopy perturbation, to solve nonlinear equations. Then the methods were compared with the modified Adomian decomposition methods. Analytically it is shown that the order of convergence of the method derived by taking three terms in perturbation techniques is three as the method obtained by modification methods Adomian decomposition. Taking four terms in perturbation techniques results a method, which is same from a method obtained by modification methods Adomian decomposition. Furthermore, the computational tests show that the method obtained by taking three terms in the perturbation technique is better than the Newton method, Steffensen method and homotopy perturbation method.Item PARTISI BILANGAN p(5n + 4); p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11(2016-05-23) Akhyar, Abdul; Syamsudhuha; Gemawati, SriA partition of a positive integer is the representation of the positive integer its self or sums of the other positive integers, while the partition function is the number of partitions. This article disscusses a simple proof of partition numbers p(5n + 4), p(7n + 5) and p(11n + 6) consecutively congruent modulo 5, 7, and 11. The proof for modulo 5 and 7 are carried out via Jacobi identities, while for modulo 11 via Euler and Jacobi identities.Item PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR(2014-03-25) Muliana; Syamsudhuha; MusrainiThis paper discusses an application of the Shank transformation on Adomian de-composition method to solve a nonlinear equation. Some numerical illustrations are given to show the effectiveness of this method. Numerical results show that the use of this method in solving nonlinear equations is more practical and provide better solutions compared with those obtained by the Adomian decomposition methodItem PENGEMBANGAN METODE ITERASI DUA DAN TIGA LANGKAH DENGAN ORDE KONVERGENSI OPTIMAL(2014-04-12) Putra, Supriadi; SyamsudhuhaDalam makalah ini disajikan dua metode iterasi baru 2-langkah dan 3-langkah yang masingmasing memiliki orde kekonvergenan empat dan tujuh untuk menyelesaikan persamaan nonlinear. Conjecture Kung-Traub mengatakan bahwa untuk mencapai orde kekonvergenan empat diperlukan tiga evaluasi fungsi, sedangkan untuk mencapai orde kekonvergenan tujuh diperlukan empat evaluasi fungsi. Melalui simulasi numerik akan ditunjukkan bahwa kedua metode ini cukup efisien dan memberikan kinerja yang sama atau bahkan lebih baik apabila dibandingkan dengan metode Newton KlasikItem Root Mean Square Newton’s Method(2017-09-14) Syamsudhuha; Muhammad, ImranIn this paper we discuss a new modification of Newton’s method based on Root Mean Square rule for solving nonlinear equations. We show that the convergence of the proposed method is of order three. We verify the theoretical results on relevant numerical problems and compare the behavior of the propose method with some mean based Newton’s methodItem SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN(2016-02-04) Rahmadayani, Ita; Syamsudhuha; Karma, AsmaraThis article discusses the solutions of systems of partial differential equations using the homotopy perturbation method and Adomian decomposition method. A numerical example shows that the solution of the partial differential equation obtained by the homotopy perturbation method is better than those of Adomian decomposition method in terms of the speed to approach the exact solution.Item SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m × n MEMPUNYAI SOLUSI(2016-02-04) Zainuri, Aryan; Syamsudhuha; Sirait, AsliThis article discusses the necessary and sufficient condition for the system of linear equations Ax = b where A is an m × n matrix, with m < n and b is an n × 1 vector to have a solution. The discussion involves determining the number of single variables by looking at columns lowering rank and determining the value of the single variables.