Browsing by Author "Dolah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Compression Pressure on the Physical and Electrochemical Properties of Activated Carbon Monoliths Electrodes for Supercapacitor Application(2015-08-18) Awitdrus; Deraman; Talib; Farma, Rakhmawati; Omar; Ishak; Basri; DolahGreen Monoliths (GMs) of self-adhesive carbon grain from fibers of oil palm empty fruit bunches were prepared by compression pressure at 1.43 × 107, 1.91 × 107 and 2.39 × 107 kg/m2, respectively. Activated carbon monoliths ACM-A, ACM-B and ACM-C prepared by CO2 activation from these GMs, respectively, were used as electrodes in supercapacitor cells which employed stainless steel 316L current collector and H2SO4 electrolyte. Evaluation of the electrochemical properties showed that ACM-A, ACM-B and ACM-C cells had specific capacitance of 30, 9 and 5 F/g, total ESR of 3.21, 4.95 and 7.33 Ω, specific power (maximum) of 173.41, 107.58 and 33.82 W/kg, and specific energy (maximum) of 0.67, 0.15 and 0.09 Wh/kg. These properties are directly associated with the surface area of the ACMs, i.e. 419, 336 and 302 m2/g for the ACM-A, ACM-B and ACM-C, respectively, indicating a direct effect of compression pressure on the physical and electrochemical properties of ACMs electrodes.Item A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes(2015-08-18) Dolah; Deraman; Othman; Farma, Rakhmawati; AwitdrusBinderless supercapacitor electrode monoliths (BSEM), prepared via the carbonization and activation of green monoliths from (a) self-adhesive carbon grains (SACG) from oil palm empty fruit bunch fibers, (b) SACG mixed with KOH, and (c) mixtures of SACG, KOH, and varying percentages of carbon nanotubes (CNTs), were characterized and evaluated in symmetrical supercapacitor cells. The porosity and the structural and microstructural characteristics of the electrodes are influenced by KOH and CNTs. The electrodes containing CNTs have a relatively lower specific capacitance but exhibit lower equivalent series resistance values and hence can sustain or improve the specific power of the cells, suggesting the need to optimize the quantity of CNTs used to sustain higher specific capacitance above 100 F/g. This innovative process uses inexpensive SACG with relatively small quantities of CNTs and KOH with no binder, and it directly combines both chemical (KOH) and physical (CO2) activation during the production of BSEM.