Browsing by Author "Agusni"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Aplikasi Graph Dalam Masalah Arus Maksimum Pada Network Aktifiti(2015-04-08) Agusni; Bahri, ZaifulSuatu Graph dapat dipergunakan sebagai model suatu network dari saluran dimana beberapa komoditas diangkut dari suatu tempat ke tempat lain. Masalah umum dalam network transportasi semacam ini adalah memaksimumkan arus biaya dari suatu arus yang telah ditctapkan. Dalam penelilian ini akan diteliti bagaimana masalah network aktifiti tranpsortasi dapat diformulasi dan diselesaikan melalui graph.Item Kekonvergenan Pecahan Kontinu F (a,b) Pada Barisan Farey(2015-02-27) Agusni; Azis, Khan; AmrisalBarisan Farey dilambangkan dengan F(a,b), dari pecahan kontinu. Dimana barisan ini akan terletak pada interval (a,b). Dalam penelitian ini akan dibahas kekonvergenan dari barisan pecahan kontinuItem KOMBINASI METODE NEWTON DENGAN METODE ITERASI YANG DITURUNKAN BERDASARKAN KOMBINASI LINEAR BEBERAPA KUADRATUR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR(2014-04-12) Putra, Supriadi; Agusni; Restu, Yudi PrimaKita akan mendiskusikan kombinasi metode Newton dengan metode yang diturunkan berdasarkan kombinasi beberapa kuadratur untuk menyelesaikan persamaan non linear satu variabel. Tulisan yang sama telah dilakukan sebelumnya oleh Dehghan M. dan Hajarian M. International Journal Computational Mathematics. 85 (1).1-6 (2008). Disini kita akan menggunakan metode yang diajukan oleh Dehghan M. dan Hajarian M. kemudian akan memperbaiki pembuktian orde kekonvergenan metode sebagai koreksi atas apa yang telah dilakukan oleh Dehghan M. dan Hajarian M. Perbandingan antara metode yang dibahas juga akan dilihat dari segi cost komputasinya.Item METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR(2013-06-10) Mahrani; Imran, M.; AgusniWe discuss an iterative method to solve a nonlinear equation, which is free from derivatives by approximating a derivative in the two-step Newton method by the method of undetermined coefficients and forward difference. We show analytically that the method is of three orde for a simple root. Numerical experiments show that the new method is comparable with other discussed methods.Item METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI(2014-03-25) Amelia, Riski; Putra, Supriadi; AgusniWe discuss an iterative method free from derivative based on divided difference for solving nonlinear equation. This iterative method has the convergence of order six and for each iteration it requires four function evaluation, so the efficiency index has 1.565. Further more, the computational tes shows that the discussed method superior, both in the number of function evaluations, as well as the number of iterations needed to get a rootItem A MODIFICATION OF UJEVIC METHOD FREE FROM DERIVATIVE(2014-05-22) Imran, Muhammad; Karma, A; Putra, S; Agusnithis paper we discuss a modification of Ujevic method, by approximating a derivative in the method with a central difference, for solving a nonlinear equation. We show that the order of convergence of the proposed method is three. We verify the theoretical results on relevant numerical problems and compare the behavior of the proposed method with Ujevic methodItem MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE TIGA(2013-03-25) HP, Feby Satrya; Agusni; MusrainiIn this paper is presented a new modification of Newton’s method for solving non-linear equations. Convergence analysis of the new method shows that the method has third-order convergence. The example of the new method computation shows that the new method can compete with Newton method, Newton method with trapezoidal rule, midpoint Newton and Newton method with invers functionItem TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR(2016-04-26) Cahyati, Yeni; AgusniThis article discusses a new iterative method based on the variational iteration technique, which is free from second derivative. This method has two-step in which the rst-step is Newton's method. In the discussion three speci c cases by choosing certain free functions in a general form of the variational iteration technique are mentioned. Analytically it is shown that the general form of the method is of order three. To see the performance of the method, the comparison with two known methods is also given.Item THIRD ORDER DERIVATIVE FREE ITERATIVE METHOD(2014-04-12) Imran, Muhammad; Putra, Supriadi; Karma, Asmara; AgusniWe propose a modification of Ujevic method for solving a nonlinear equation by introducing two parameters, after aproximating the derivative by a central difference method. We show that the proposed method is of order three. Numerical experiments are in agreement with analytic results. Using some test functions we compare the proposed method with some discussed methodsItem TWO STEP METHOD WITHOUT EMPLOYING DERIVATIVES FOR SOLVING A NONLINEAR EQUATION(2014-04-12) Imran, Muhammad; Agusni; Karma, Asmara; Putra, SupriadiWe discuss an iterative method for finding root of a nonlinear equation employing central differences to avoid derivatives in the method. We show that this two step method is of order three. Numerical simulations show that the method is comparable with others third order methods