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Abstrak 

  

This paper presents a comparative study of the performance learning algorithm for 

Radial Basis Probabilistic Neural Network (RBPNN), and the Radial Basis Function 

Neural Network (RBFNN), are evaluated and compared for their ability to classify data 

based on sensitivity analysis. RBPNN generally performs similarly to RBFNN. Both of 

them are trained using gradient descent. In this research, sensitivity analysis is used to 

prune the feature data. The results show that the network still works well after pruning. 

The issues of network optimization and computational efficiency in use are discussed. 

Finally, to evaluate the performance, our experiments are demonstrated by two 

examples of real life data set. 

  

Kata kunci: RBPNN, RBFNN, pruning criteria, sensitivity analysis, classification 

 

 

1  Pendahuluan 
 

The comparison of the Radial Basis Probabilistic Neural Networks (RBPNN) and 

Radial Basis Function Neural Network (RBFNN) are discussed in this paper. The 

construction of a RBPNN involves four different layers: one input layer, two hidden 

layers and one output layer. The first hidden layer is nonlinear processing layer. The 

second hidden layer selectively sums the output of the first hidden layer, and it’s 

generally has the same size as the output layer for a labeled pattern classification 

problem. The weight between the first hidden layer and the second hidden layer of the 

network are ones or constant (including zero)[5 Huang D.S. and Zhao W.B.]. RBPNN 

have been applied to a wide variety of different areas including human face recognition. 

In the other side, RBFNN consists of three layers, namely input layer, hidden layer and 
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output layer [3 Du, K.-L. and Swamy, M.N.S].  

The performance of the RBPNN and RBPNN depends on the number and position of 

centers, spreads, and the method used for learning the input-output mapping. The 

existing learning strategy can be classified as follows: 1) strategies selecting the centers 

randomly from the training data 2) Strategy employing unsupervised procedure for 

selecting centers 3) strategy supervised procedure for selecting the centers [6 

Karayiannis, N.B]. There are many alternative learning method for neural networks. In 

the case of multilayer networks the first succesful algorithm was the classical 

backpropogation [1 Castillo, E., Guijarro-Berdinas, B., Fontenla- Romero, O., and 

Alonso-Betanzos, A].  

The simplication of NN have been proposed, such as improving the training 

algortihm, sensitivity based feature selection and sensitivity analysis of the centers of 

the hidden neurons [9 Wang, X.-Z., Li, C.-G., Yeung, D.S., Song, S.J. and Feng, H.M]. The 

sensitivity based network simplification is one of the most effective and most promising 

techniques. Sensitivity analysis of features is a fundamental issue in neural network 

design. It can be used as the means of feature selection, simplifying the neural network 

and improving the generalization performance [9 Wang, X.-Z., Li, C.-G., Yeung, D.S., Song, 

S.J. and Feng, H.M]. The Sensitivity analysis of the input is an efficient way to simplify the 

structure of the RBPNN [4 Hasanuddin, Irawan, MI].  

Selection of the center for the hidden neurons of RBFNN and RBPNN follow the 

model in determining the center on PNN, using all the training samples as a center. 

These methods inefficient because it causes the network too fit, network generalization 

to be low. Furthermore, the development of methods of determining the center that 

involves training the model using Recursive Orthogonal Least Square (ROLSA). 

Method of determining center for RBFNN can also be done on RBPNN. One method 

used to deterine the center of RBFNN using the techniques clutering [Huang, DS and 

Zhao, W.B.]. Clustering is a data analysis tool to characterize the distribution of the data 

set. This technique will be applied to determine the center of RBFNN. A set of training 

grouped into appropriate clusters, in which the prototype was then used as a center 

RBFNN. 

This paper is organized as follows. Section 2 present a supervised learning 

algorithm for RBPNN based on gradient descent. Section 3 present sensitivity measures 

to input over training dataset and rule for selecting the redunandt feature. Section 4 

evaluates the performance of the RBFNN and RBPNN and trained using the proposed 

learning algortihm and Section 5 contains concluding remarks. 

 

2  Determining Centers, Spread and Weight 
 

One method is widely accepted because of its ability to provide good results is the 

K-means clustering. The basic idea of this algorithm is to collect the data into several 

groups and choose a center based on the size of the centers by using Euclid distance. 

Furthermore, each associated with a cluster point Gauss on RBFNN hidden neurons. 

The above considerations, this study uses k-means clustering to determine the center. 
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The basic idea of the algorithm is to collect the data into several groups and choose 

a center based on the size of the centers by using Euclid distance. Furthermore, every 

point cluster (center) associated with Gauss hidden neurons in the network. RBFNN and 

RBPNN that uses Gaussian kernel also use the spread. Spread can be selected by using 

the average of all the Euclidean distance between the centers with its immediate 

environment. in this study, a simple method used in determining the spread as follows 

 

 

K

dmax  (1) 

where dmax is maximum euclidean distance of learning dataset and K is total point of 

dataset. 

RBFNN weights determined by Eq. (2). This method is based on the gradient 

decent. Suppose RBFNN has s output, then the output vector  syyy ...,,, 21  and 

 Tknkkk wwww ...,,,, 321  is expressed as a weight vector for the k-th output. so each 

output vector can be written as follows 

 

 
 

 
 




















m

j

n

i j

jii

kjk

ux
wy

1 1
2

2

2
exp


, k = 1, 2, ..., s (2) 

 

Where n  is number of input features, m is number of RBFNN center, xi is input vektor.  

RBPNN learning can be viewed as a mapping vektor N

l Rx  to vektor M

l Ry , 

thus forming the input-output pairs  ll yx , , Ll ,...,2,1 . So, for every input vektor x 

can be written 
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Where hk(x) is output neuron in the second hidden layer , that is 
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3  Sensitivity Analysis 
 

Response sensitivity of function f according to variabel ]...,,,[ 21 Nxxxx   given by its 

gradient. So, input sensitivity can be defined as vektor of 
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Sensitivity in eq. (4) can be considered as as a sensitivity coeffisient. Especially, 

output sensitivities ym wich refers to the input xn  
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 If the output of the network ismultiple, then the sensitivities can be written as 

jacobian matrix as follow 
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Where  lx are input points. 

 

a) Sensitivity measures of RBFNN 
Considering RBFNN with multiple outputs. Assuming that the RBFNN has M 

output, then the output vektor can be expressed by  Myyy ,...,, 21 . Thus, each output 

expressed by  
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The partial derivatives of Eq. 6 can be written as follow 
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Eq.(7) used to calculated sensitivities of m-th output wich refers to n-th input. 

 

b) Sensitivity measures of RBPNN 
Sensitivity measure of RBPNN almost similiar to the sensitivity measure of RBPNN. 

Assuming that the RBPNN has M output, then output vektor can be expresssed as 

 Myyy ,...,, 21 . Thus, each output can be formulated as follow 
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The sensitivity of RBPNN can be obtained by partial derivatives as follow 
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Where n = 1, 2, ..., N. 

 

Eq. (9) used to calculate the sensitivity of m-th output wich refer to n-th input. 

 

 

c) Criteria for selecting the redunandt features 

 

Sensitivity matrix, S, used to determine which inputs have the smallest effect on output. 

When one or more input sensitivity is relatively small when compared with the others, 

then the dimension of the input to the neural network can be pruned by eliminating the 

input features. Furthermore, significance measures for every n-th input calculated by 
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is sensitivity n-th input over m-th output. 

After measuring the sensitivity using eq. 9, then each input sensitivity ordered by 
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Then the largest gap is given by the following equation: 

 ,max1max u
u

gg   1,...,2,1  Nu ,  

gmax position can be determined as effective feature that have a significant effect for the 

networks. 

ucut = u,   

The second largest sensitivity gap determined by 

 ,max2max u
uu

gg
cut

  1,...,2,1  Nu , 

If 1maxg  largest than 2maxg , C 1maxg > 2maxg , chose arbitrarily within reasonable range, 

e.g C = 0.5, then the input feature are smaller than
cutunS can be pruned.  

 

4  Experiments and Results 
 

A series of numerical simulations have been performed to evaluate the performance of 

RBPNN and RBFNN. The study focused on the classification accuracy and sensitivity 

analysis RBPNN input features. There are two datasets used in this experiment, Iris 
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dataset and E-Coli. Both were obtained from the UCI Machine Learning website. 

 

a. Dataset Iris  

Iris dataset has 150 points consisting of four attributes, sepal length, sepal width, petal 

length and petal width, the four attributes has units of cm. Iris dataset is divided into 

three subset: 50 points for the type Setosa, 50 points for Versicolour and 50 points for 

virginica. In this experiment, daata divided into two parts, 70% are used as training data 

while the remaining 30% is used as the test data. 

Table 1 and Table 2 shown the classification performance comparison for Iris 

dataset identification between RBFNN and RBPNN.  

 

Tabel 1. Classification Results using RBFNN Algorithm for Iris Dataset 

Data Amount Classification Error 
Classification 

Percentage 

Training 105 3 97.14% 

Testing 45 1 97.78% 

  

 

Table 1 shown classfication results using RBFNN. For training dataset, the 

classification percentage achieve 97.14% and testing dataset achieve 97.78 %. Table 2 

shown classfication results using RBPNN. For training dataset, the classification 

percentage achieve 97.14% and testing dataset achieve 97.78 %. Table 1 and Table 2 

shown the classification performance of RBFNNN and RBPNN is similiar. In other 

word, the effectivity of RBFNN and RBPNN is equal.  

 

Table 3. Time Effeciency and Epoch during RBFNN and RBPNN training for 

iris dataset  

Neural 

Network 
Time (second) MSE Epoch (Iteration) 

RBFNN 1.7344 0.3029 820 

RBPNN 0.5469 0.3473 143 

 

Table 3 shows the comparison of time effeciency and epoch between RBFNN and 

RBPNN. CPU time for RBFNN is 1.7344 second, whereas 0.5469 second for RBPNN. 

RBFNN epoch need 820 iteration, whereas RBPNN need 143 iteration. This means 

RBPNN more efficient than RBFNN. MSE for RBFNN is 0.3029 more small than 

RBPNN MSE that is 0.3473. Figure 1 and 2 shows error convergence for RBFNN and 

RBPNN learning.  

Table 2. Classification Results using RBPNN Algorithm for Iris Dataset  

Data Amount Classification Error 
Classification 

Percentage 

Training 105 3 97.14% 

Testing   45 1 97.78% 
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Figure 1: MSE Graphic during RBFNN Training for Iris dataset 
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Figure 2: MSE Graphic during RBPNN Training for Iris Dataset 
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(a) Features Sensitivities during RBFNN Training 
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(b) Features Sensitivities during RBPNN Training 

Figure 3: Input Significance changes during training for iris Dataset  

 

Generally, input features sensitivities to iris dataset output fetaures can be see in 

the Figure 3. It can be seeen in that initial sensitivitas are low, during the training all of 

sensitivity increase.  

Table 4 shows input feature sensitivities, input sensitivities for RBFNN, sensitivity 

of x3 (petal length) is 0.4468, input feature x4  (petal width) sensitivity is 0.3963, x1 

(sepal length) sensitivity is 0.3164 and x2 (sepal length) is 0.2955. Input sensitivities for 

RBPNN, x3 sensitivity is 0.44636, x4 sensitivity is 0.39434, x1 sensitivity is 0.29341 and 

x2 sensitivity is 0,28656.  
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Tabel 4: Feature Sensitivity and Gap for RBFNN and RBPNN 

for Iris Dataset. 

Input 

Feature  

RBFNN RBPNN 

Sensitivity Gap Sensitivity Gap 

3 0.4468 1.0707 0.44636 1.131917 

4 0.3963 1.1274 0.39434 1.34399 

1 0.3164 1.2527 0.29341 1.023904 

2 0.2955 0 0.28656 0 

     

gmax1 1.1274   1.34399   

gmax2  1.2527   1.131917   

gmax2/gmax1 0.90000 >C 0.842206 >C 

 

After calculation of RBFNN sensitivity gaps, the biggest gap is gmax1 = 1.1274 and 

the second largest gap is gmax2 = 1.2527. Feature reduction criteria selected is C = 0.5, 

then there is no feature that recomended to pruned. In other words, if the input feature 

reduction is done, it will cause RBFNN classification performance will decrease. as 

well as calculations for RBPNN, the biggest gap is gmax1 = 1.34399 and the second 

largest gap is gmax2 = 1.131917. Feature reduction criteria selected is C = 0.5, then there 

is no feature recomended to be pruned. In other words, if the input feature reduction is 

done, it will cause RBPNN classification performance will decrease. 

 

b. Dataset E-Coli 

  

E-coli dataset created by Kenta Nakai of the Institute of molecular and Cellular Biology, 

Osaka. E-coli dataset consisting of 336 data points and 7 and 8 types of input features 

subdata. The data are used as the training dataset is 244 points, whereas for the test 

dataset is 94 points (there are 2 repetition points). 

 E-coli dataset trained using RBFNN and RBPNN algorithm. Furthermore, each 

input features sensitivity analyzed, the sensitivity analysis using methods that have been 

formulated in the previous discussion.  

 

Table 5: Classification Results using RBFNN Algorithm for E-Coli 

Dataset. 

Data 
Amount Classfication 

Error 

Classification 

Percentage 

Training 244 38 84.43% 

Testing 94 20 79,17% 
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Tabel 6: Classification Results using RBPNN Algorithm for E-Coli 

Dataset. 

Data 
Amount Classfication 

Error 

Classification 

Percentage 

Training 244 41 83,20% 

Testing 94 19 80,21% 

 

Table 5 shows clasisfication results using RBFNN. For training dataset, the 

classification percentage achieve 84.43% and testing dataset achieve 79.17%. Table 6 

shows classification results using RBPNN. For training dataset, the classification 

percentage achieve 83.20% and testing dataset achieve 80.21%. Table 5 and Table 6 

shows the classification performance for training dataset of RBFNNN better than 

RBPNN performance, conversely, for testing dataset RBPNN better than RBFNN 

performance.  

 

Table 7: Time Effeciency and Epoch during RBFNN and RBPNN training for 

iris dataset 

Neural Network Time (second) MSE Epoch (iteraion) 

RBFNN 40.9219 0.6760 100 

RBPNN 5.1094 0.7910 81 

 

Table 7 shows the comparison between RBFNN and RBPNN, time for training 

RBFNN is 40.9219 seconds and to RBPNN is 5.1094 seconds. respectively, each epoch 

for RBFNN and RBPNN are 1000 iterations and 81 iterations This means that the 

RBPNN more efficient when compared with RBFNN. The RBFNN MSE is 0.6760 is 

smaller than the RBPNN MSE is 0.7910. 
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(a)         (b) 

Figure 4. (a) Input significance during RBFNN training, (b). Input significance 

during RBPNN training 

 

The sensitivity of the input feature dataset with E-coli RBFNN training can be seen 

in Figure 4 (a). Features that have the highest sensitivity is gvh, followed by feature 
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mcg, alm2, aac, alm1 and lip. While chg is a feature that has the lowest sensitivity is 

3.1837 x 10
-011

. Meanwhile, the sensitivity of the input feature dataset RBPNN Training 

E-coli can be seen in Figure 4 (b). Features that have the highest sensitivity is gvh, 

followed by feature mcg, alm2, aac, alm1 and lip. While chg is a feature that has the 

lowest sensitivity is 3.1597 x 10
-011

. 

 The sensitivity of each input features can be seen in Table 9. Gap each feature is 

also calculated, the biggest gap is gmax1 = 9.2503x10
010

, while the second largest gap is 

gmax2 = 1.0872. Criteria for reduction of input feature is calculated based on the criteria 

presented, value obtained 1.3162x10
-10

. There are no specific criteria of determination 

of the value of C, the experiment have been the value of C = 0.5. 1.3162x10
-10

 < C. ucut 

position is determined by the position of the biggest gap, ie ucut = 6. Ucut using these 

criteria, all input features that have sensitivity under ucut, can be reduced without 

reducing the ability of the network performance. Table 9 shows that features 4 has a 

lower sensitivity when compared to other input features position. 

 

Tabel 9: Feature Sensitivity and Gap fusing RBFNN for 

E-coli Dataset 

Feature Sensitivity Gap 

1 4.7890 1.0196 

2 4.6968 1.2176 

5 3.8575 1.1348 

7 3.3993 1.0617 

6 3.2019 1.0872 

3 2.945 9.2503e+010 

4 3.1837e-011 0 

gmax1 9.2503e+010 
gmax2 1.0872 

      

gmax1/gmax2 1.3162e-011 < C = 0.5 

 

Table 10 shows the sensitivity of each input features for RBPNN training. Gap each 

feature also calculated, the biggest gap is gmax2 = 279339620.85, while the second 

largest gap is gmax2 = 2.846040724. Criteria for reduction of input feature is calculated 

based on the criteria presented. Value 1.017276x10
-10 

obtained. The experiment shows 

1.017276 x 10
-10

 <C. ucut position is determined by the position of the biggest gap, ie ucut 

= 6. Ucut using these criteria, all input features that have sensitivity under ucut, can be 

reduced without reducing the ability of the network performance. In Table 10 can be 

seen that features 4 has a lower sensitivity when compared to the features of the input 

position. 
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Tabel 10: Feature Sensitivity and Gap fusing RBPNN for 

E-coli Dataset. 

Fitur Sensitivitas Gap 

2 3.8052 1.175460274 

1 3.2372 1.037431099 

7 3.1204 1.155062003 

5 2.7015 1.073770818 

6 2.5159 2.846040724 

3 0.884 27977339620.85 

4 3.16E-11 0 

gmax1 27977339620.85  

gmax2 2.846040724 

      

gmax1/gmax2 1.01727E-10 < C = 0.5 

 

After the input feature 4 (chg) pruned, network retrained using RBFNN and 

RBPNN algorithm. Percentage of ability can be seen in Table 11 for RBFNN and Table 

12 for RBPNN. 

 

Tabel 11: Classification Error Percentage and Classification 

Percentagusing RBFNN Algorithm after Input Feature Pruned 

Data Error Percentage Classification Persentage 

Training 15,57% 84,43% 

Testing 20,83% 79,17% 

 

Table 11 shows the percentage of classification error for the training data after input 

feature chg reduced still is 15.57% with the percentage of classification capabilities as 

much as 84.43%. While the percentage of classification error for the test data is 20.83%, 

and the performance of classification is 79.17%. 

 

Tabel 12: Classification Error Percentage and Classification 

Percentagusing RBPNN Algorithm after Input Feature Pruned 

Data Error Percentage Classification Persentage 

Training 15,57% 84,43% 

Testing 19,79% 80,21% 

 

Table 12 shows the percentage of classification error for the training data after input 

feature chg reduced still is 15.57% with the percentage of classification capabilities as 

much as 84.43%. While the percentage of classification error for the test data is 19.79%, 

and the performance of classification is 80.21%. 
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Conclusion 

 
Efficiency and effectiveness an artificial neural networks can be improved by applying 

the sensitivity of each input feature. The ability of RBFNN network classification better 

than RBPNN, but RBFNN learning speed is slower than the RBPNN. The results also 

showed that sensitivity analysis can be used to improve the efficiency of neural network 

structure and classification capabilities remain effective. RBFNN model's accuracy is 

better than the RBPNN. Based on simulation results using a computer program for data 

classification capabilities RBFNN Iris can reach 97.14%, while RBPNN reach 97.14% . 

 Sensitivity analysis of RBFNN and RBPNN applied to see the sensitivity of each 

input to output feature RBFNN and RBPNN. If the criteria for the reduction fullfilled, 

the input feature can be pruned. For Iris dataset are not allowed to perform the reduction 

of the input feature. Whereas, for E-coli dataset results showed that after the reduction 

of the input feature classification ability of RBFNN and RBPNN is not change. 

 Artificial neural networks are basically can be applied into various things. For 

further development, the model RBFNN and RBPNN still allowed to be studied and 

developed, especially regarding the method of determining the effective center and the 

determination of the initial values and other important parameters. In addition, the study 

of theory, RBFNN and RBPNN can be applied to pattern recognition, kalasifikasi for 

practical purposes. 
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