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Abstract

In this paper we propose a new modification of Newton’s method based on midpoint rule for
solving nonlinear equations. Analysis of convergence shows that the new method is cubically
convergent for a simple root and linearly for multiple roots. The method require one function
evaluation and two of its first derivative, but no evaluations of its second derivative. We verify
the theoretical results on relevant numerical problems and compare the behavior of the propose
method with some existing ones.

Keywords: Modified Newton’s Method, Midpoint rule, trapezoidal rule

1 Introduction .

Newton’s method, which is quadratically convergent, is the most popular method to find a root of

a nonlinear equation,
flz) =0, f:DcR-R (1)

Many researcher are interested in modifying the method to obtain a higher order method. The
first third order method resulted on the modifying the Newton’s method appear in Wall [8]. This
modification requires the second derivative of f(z).

Weerakoon and Fernando [7] have suggested an improvement to the iteration of Newton’s method
without requiring the second derivative of f(z) . They have approximated the indefinite integral
using trapezoidal rule.

In this study we suggest a modification of the iteration of Newton’s method by approximating
the indefinite integral using a midpoint rule. The modified method need one functional and two first
derivative evaluations for each iteration.

2 Preliminary Results

Definition 1 (See [1]) A sequence of iterates {x, : n > 0} is said to converge with order p > 1 to
a point « if

|a_$n.+1| < C|'9-’ —:EHIP, n=>0
for some ¢ > 0. If p = 1, the sequence is said to converge linearly to o. In that case, we require
¢ < 1; the constant ¢ is called the rate of linear convergence of z,, to a.

Let e, = 2, — a be the error in the nth iterate of the method which produce the sequence {z,}.

Then the relation
€nt1 = ceb + O(eﬂ‘“) = O(ed

is called the error equation. The value of p is called the order of convergence and ¢ is known as the
asymptotic error constant of this method.

*Presented at the 14*" National Conference in Mathematics, and the Congress of Indonesian Mathematical Society,
held at the Sriwijaya University in Palembang, July 24-27, 2008

163

* Repository University Of Riau
PERPUSTRKARRAND UNIVERSITRS RIAU
http://repository.unri.ac.id/




Prosiding Konferensi Nasional Matematika XIV i [2008]

Definition 2 (See [7]) Let a be a root of the function f and suppose that z,_1, &y, n41 are closer
to thé root ae. Then the computational order of convergence p can be approximated using the formula
o n|(@nt1 — a)/(zn — )|
~ (2)
In|(zn — @)/(Tn-1 — @)

3 Some Modified Newton’s Methods

Newton’s method (NM) for computing the root a of the nonlinear equation (1) is to start with initial
estimate xg sufficiently close to the root o and to use the one point iteration

f('vn) (3)

Intl = Tp — f_,(x )
n

where x,, is the n-th approximation of a. We may also view 2,1 as the root of the two-term Taylor
expansion or linear model of f about z,,[5],

M(z) = f(zn) + f'(zn)(z — Ta).
By integrating by part this local model can be viewed as the following obvious identity,[2],

@) = S+ [ £s)s (@

Newton approximates f;ﬂ f!(s)ds in (4) using the left Riemann-sum for one interval, resulted in
[ £~ @) —a). (5)
On substituting (5) into (4), setting }(z:) = 0 rearranging the terms of the resulting equation, we

end up with the equation (3). -
Weerakoon and Fernando [7] approximate the indefinite integral involved in (4) by the trapezoidal

rule, : ) i
f F(s)ds ~ (f—(x-");—f('”))(z — z),

and then by some algebra they end up with the following scheme (TNM)

. 2f(xn)
T =0 P+ F () L
* " f(xﬂ-) (?)

Ty =Tn— =
i " f !(:Bn)
They prove that the scheme is a third order convergence. The way they choose z},,, as in (7) was
introduced for the first time by Wall in [8].
Now from the approximation error of trapezoidal rule and midpoint rule, that is

b
Er :=f f(:r)das—g(f(a)—i—f(b))): (b ©=9 1), £ e (a,b)andf € Ca, b,

and ) i
a+b b—a
Bui= [ @)z - 0-a)f(50) = P51, €€ (@bmdf € Clat
[}

we see that the approximation error of the midpoint rule needs the same smoothness as the trapezo-
idal rule. By comparing the constant in front of the derivative of f, the absolute value of midpoint
approximation error is slightly smaller than the trapezoidal rule. From this view we may use the
midpoint rule to approximate the indefinite integral involved in (4), that is

f: f'(s)ds = (z —:z,,)f'(x —i—an)

Then, by some algebra we propose the scheme (MNM)

f(zn)
‘n e YT e 8
LTI Pl ) W
% In
Tpyl = Tn — 2?_(4'(1:?)) . [9)
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4 Asymptotic Error Analysis

Theorema 3 Let f: D — R for an open interval D. Assume that f has sufficiently differentiable
function on the interval D. If f has a simple root a € D and z; is sufficiently close to a, then the
MNM defined by (8) and (9) satisfies the following error equation:

3
ent1 = (3 + 303)631 + O(ep),

where e, = £, — @ and
)
C; = T, =28,
T (@)

Proof: See Imran [4]

Theorema 4 Let f : D — R for an open interval D. Assume that f has sufficiently differentiable
function on the interval D, and f has a multiple root o of multiplicity m > 1 € D. If x is sufficiently
close to a, then the MNM defined by (8) and (9) satisfies the following error equation:

o= (1= oo~ (Gt ror)

2Km3
m—1
wheree, =z,—a, c¢j= ﬁa% forj=2,3, K=1lform=1land K= (1—#) for m > 1.

Proof:
We follow the technical proof from [6]. Let a be a root of multiplicity m, (i.e.f(a) = f'(e) =
f™(a) =0, and f(™+1)(a) # 0. We expand f(z,) about = & using Taylor expansion, that is

f(m (0'} e i T )
* (m + 1)!

f(m+2) (0:)

(m = 2)! (S'L‘ﬂ - a)m+2

(wn e a‘)m+1 +

flzn) =

(T — @)
f(m+3)(a)
(m+ 3)!
f('”( ) o

(Zn — @)™ + O((zn — )™ 1)

™(1 4 coen + czel + caed + O(ed)), (10)

where
f{m+j—l) (t’l)

fM(@)(m+1)(m+2)---(m+j—-1)

c; = j=2,3,4.

Moreover we have

(m+1)
f'@n) = ( lyn a1+ L@ g gy
(m+2)
f(rr—l,-l-{)i')(x“ — o)™ 4 O((z — )™2)
f(m)(a ( 3 (m+1)f m+1)(a}
T (m—-1)! €n o mim+1) ™
(m + 2)f ™+ (a)
Fm) (@)m(m + 1)(m + 2) ei + O{Pi))
= %n—)(—?))!e?_] (1 + .(_T%I).CZGH + m_rnﬂcaei ¥ 0(6;::)). (11)

Computing f(z,)/(2f'(z,)) from (10) and (11) and recalling

Q+z)t=1-z+2* -2 +2* —2°+..- 4+ 0O(")
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we obtain after some algebra

(‘4611 =t O u))

(r J
f(iﬂ) E L m! (1 + o€y + (—..ien +
2f (-T:n.) 2 f::.il(;?e;ln_ (1 Ha (7n+l)c en + ("’::2){’;82 +O ))
= ﬂ(eu + co€2 + czed + O(el))

1
" (1 + (m + Jc'gef, (m + 2)
m m

1
= —(en + c2€2 + czed + O(e))

czel ++0(e ,L))_'

2'"; [1 - (1+ i)czen. + (— g inﬂ + T +c+ %)e,ﬁ-@(eﬁ)]
= g o0 — el + ()] (12)
On substituting (12) into (8) and simplifying yields
A 21 [en = 2e2 + 0(e3)]
—g 4 [(1—%)%&; 22 4 Ofe )} (13)
"
.3 a—(l—;) +262n+0(e) — (14)
Expanding f(2},,) about & = @, noting (14) and simplifying, we end up with
Fl@h) = Q(;"—)),((l — 5 )en+ 52gel +O(sn))"""
x[1+ m“)@(( ) S2el +O(e))
+ m+2)r’ ((1- —) ent 523k + O(e})) +O(el)]
(f::?)}l(( ) +2 2 +o(’“))m l
x [1+ (2’”2 ) eaen
( | (m®+ 42—4;3- m +2) es)et + O(eh)]
- E e [1 + (Qﬁ;n”—_l)
+ (Tt T o) d o] a9

where
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Furthermore, using (10) and (15), and recalling (4), we compute f (xn)/f'(x}, 1), that is

(m)
flzn) . L2 om (1 4 coen + czel + caed + O(ed) )
" 70 (o) =
P @) S Kep™ 1[1 + (—"'7—2'";:{" )r:zen - ((2::%2) o + Umitim s 7’"“’63) e2 + 0(69.)]
1 (en + c2€l + caen + O(ed))

mK [1 . (%w;—_l)c“ze“ + ((21n+2)c e (4m3+4m23 Tm+2) )62 o 0(83 )]

1
— —K(e“ +esel + eged + O(ed))

2m? +m—1 (2m + 2) (4m® 4+ 4m? — Tm + 2) 3 3,11
x [1 i (—25_)628"” ¥ ( dm? 5 4m3 Cs)e“ ¥ O(en}]
_ 1 (1-m)
= —(en + 5 Leach + O(e3)). (16)

On substituting (16) into (9), we obtain

_ . _fl=n)
B /|
1 1-—
o= (1= )~ (Gl +01)

This end the proof.

5 Numerical Simulations

The modified methods and Newton’s method are tested using some functions and initial points,
which have been used [7], [3] and [1]. We compute the computational order of convergence (COC)
using formula (2). We stop the program using the following criteria

[Zrs1 — @n]
[Tn1]
|f(@nt1)| <€,

|Znt1 — @] < e,

< €,

where € = 2.22¢ — 10 and « is the root. All programs are written in Matlab 7 and run on Windows
PC with Intel Processor at 2.4 GHz. The computational results for the case of simple roots are given
in Table 1 and for the multiple roots are given in Table 2 .

Table 1: Comparisons of the number of iterations and the COC of the modified methods for the
case of simple roots

f(@) % Number of Iterations COC

NM [ MNM [ TNM | NM | MNM | TNM

-10| 8 6 3 | ND [ ND | ND

17 | 4 3 3 [2.006 [ ND | ND

cos(z) — x 20 | 3 3 3 [2001 | ND | 2.99%

30 6 3 8 [2.001 | 2.958 | 2.885

40 | 29 4 6 | ND | ND | 2978

25| 5 3 3 [1.998 [ 2.985 | 2.979

a0 | 7 4 5 [2019 [ 2971 | ND
(-100P%-1 [05[ 15 5 15 [1.999 | ND | 3.013

10| 10 5 7 | ND | 2993 | 3.018

20 10 6 8 [ 2014 | 3013 | ND

2e®) —sin*(z)+ | -3.0 [ 13 18 9 2000 [ 3.019 [ ND

3cos(z) + 5.0 1.2 [ 100+ | 38 20 [1.002] ND | ND

S rmaing 33| 8 5 6 [ 2.000 [ 2.991 | ND

[ -1
35 | 11 7 8 [ 2.000 | 2639 | ND
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Table 2: Comparisons of the number of iterations and the COC of the modified methods for the
case of multiple roots

() - Number of Iterations cocC
NM | MNM | TNM | NM | MNM | TNM
10 | 18 | 11 11| 1.000 | 1.000 | 1.000
—2.22z+ [ 06 | 16 | 10 10 | 1.000 | 1.000 | 1.000
1.2321 92 | 17 | 11 11| 1.000 | 1.000 | 1.000
100 20 | 13 13 [ 1.000 | 1.000 | 1.000
. ; 06 | 18 | 11 12 [ 1.000 | 1.000 | 1.000
0 ;62';‘*"'" * 0.8 | 16 | 10 | 11 | 1.000 | 1.000 | 1.000
: 14 [ 15 | 10 10 | 1.000 | 1.000 | 1000
i o 11| 1.000 | 1.000 | 1.000
e 00 | 18 | 11 12 [ 1.000 | 1.000 | 1.000
" 05 | 17 | 11 11| 1.000 | 1.000 | 1.000
P 15 | 15 | 10 10 | 1.000 | 1.000 | 1.000
20 20 | 13 13 | 1.000 | 1.000 | 1.000
25 | 25 | 16 17| 1.000 | 1.000 | 1.000
¥ — 8?4 00 | 22 | 14 15| 1.000 | 1.000 | 1.000
2422 —32z+16 | 4.0 | 22 14 15 1.000 | 1.000 | 1.000

10.0 | 27 17 18 1.000 | 1.000 | 1.000

From the Table 1, we see that some of the COCs is not defined (ND). This occurs because
division by zero while applying the formula (2). The COC of all methods for the case of simple roots
matches the theoretical results, both for Newton’s method and the modified methods. In general,
the number of iterations produced by applying the MNM is fewer than the other methods, except at
the starting point 2o = —3.0 and zp = 1.2 for f(z) = zel=®) — 31n2(:r) + 3 cos(z) + 5.0, where MNM
method needs 18 and 38 number of iterations respectively. -

From the Table 2, we see that the COC for the all methods for the case of multiple roots is one.
This matches the theoretical result as stated in the Theorem 4 for the MNM. In general, the number
of iterations produced by applvmg the MNM is fewer than the other methods, except at the starting
point xo = 1.8 for f(z) = 2* — 5423 + 10.5622 — 8.954x + 2.7951, where MNM method needs 13
number of iterations. In all experiment for the multiple roots, the iteration ends not because of test
of error given fulfilled, but because the value of function satisfies the second stopping criteria. This
matter represents especial constraint in approximating multiple roots.
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