MOLECULAR CHARACTERISTICS OF VIBRIO SP CAUSING BLACK TIGER PRAWN (PENAEUS MONODON) DISEASE IN SUMATRA AND JAVA SHRIMP PONDS BY 165 RDNA SEQUENCING

by:

Feliatra Felix*, Titania Nugroho**, Sila Silalahi* and Yuslina Octavia8 **

*) Marine Microbiology Laboratory, Department of Marine Science, Polytehnic Pasir Pengaraian Indonesia **) Biochemistry Laboratory, Faculty of Science and Mathematics University of Riau Pekanbaru Indonesia

Abstract

Shrimp disease caused by Vibrio sp is one of the main limiting factors in the increasing production in shrimp farming. This disease may kill the shrimp and cause high loss in shrimp culture in South East and East Asia. Samples of ten (10) individual of a ten months cultured giant tiger prawn as well as liter pond water and sea waters were collected from shrimp ponds in Bengkalis Island, Sumatra. Samples of shrimps were also collected from Jepara shrimp ponds in Central Java and they were selected by looking at their behaviour and unhealthy physical characteristics. Amplification, sequencing and bioinformatics analysis of 16S rDNA to identify Vibrio species were conducted in Biotech Center, BPPT Serpong Banten. The results of DNA sequencing of each bacteria isolate were compared to DNA sequences from GenBank, the international DNA bank database. Tracing were made by BLAST (Basic Local Alignment Search Tool) system accessed through the internet at http://www./ncbi.nlm.nih.gov/blast. The result of this study found that of seven strains of Vibrio sp. Bacteria analyzed, five were 97% homologues to V. alginolyticus, V. parahaemolyticus, V. harveyi, V. shilonii and V. vulnificus. Meanwhile, another two strains isolated in this study were not found to be homologues to any of the Gen-Bank listed strain and therefore are considered as indigenous Vibrio sp bacteria from Indonesia.

Key Words: Vibrio sp, bacteria, shrimp, aquaculture, fish disease.

1. INTRODUCTION

Shrimp farming contributes significantly to the production of Indonesian fisheries sector. Indonesia's exports of shrimp production once reached 50% of all fishery exports in 2002 and ranks fifth in the non-oil export commodities. In order to sustain the production of shrimp that has provided a major foreign exchange for the country, various factors that cause reduction of shrimp production must be addresed.

Various failures that occurs in Indonesian shrimp farming has become a phenomenon that is very detrimental. Such failures are usually caused by *vibrio sp* attack which results in the fast death of shrimp large numbers. *Vibrio sp* infected shrimp are generally characterized by clinical symptoms, in which the shrimp looks weak, dark red or pale, antennae and swimming legs are red. This is the type of pathogenic bacteria that infects and causes disease when shrimp_conditions are weak and extreme environmental factors (Lopillo, 2000).

Due to the fact that Indonesia is one of the largest producers of shrimp in the world, it is very important to know what types of bacteria that causes death in shrimp. It is believed that there is a type of *Vibrio sp* originating from Indonesia that probably does not exist in other countries, because the diversity of *Vibrio* species in Indonesian waters is still very little studied and analyzed.

Occurrence of shrimp mortality due to *Vibrio sp* attack makes the shrimp farmers suffere huge losses. The potential of such a large spread of *Vibrio* should be overcomed quickly by performing a variety of prevention efforts. In an effort to control the possibility of *Vibrio sp* attacks, the detection of *Vibrio* species needs to be done appropriately, because the waters in different locations can have a diversity of different *Vibrio* species as well.

One of the best technologies that can identify *Vibrio* species is to analyse 16S rDNA sequences of isolated strains. In studying the shrimp disease-causing bacterium *Vibrio*, this technique is relatively a new technique that is often applied because it can be compared with the Gen-Bank data base to determine the similarity of DNA homology with similar bacteria. Currently, many taxonomists accept that the study of molecular microbiology, particularly nucleic acid analysis, reliable method to indicate the species and determine phylogenetic

relationships between different organisms. Analysis of DNA sequencing represents the last reference to identify subtypes within a species or microbial screening (Lusiano, 2007). Data base for the bacteria of the genus *Vibrio* have been established and continues to grow

with new species discoveries. This database can be accessed virtually in GenBank in the site http://www/ncbi.nlm.nih.gov/blast (Harth et al., 2007)._ Each species of bacteria has molecular characteristics that can distinguish them from one species with other species in one genus (Andrito, 2007).

Identification using 16S rDNA techniques to get the bacteria on giant tiger prawns, pond water and sea water is dominated by the genus *Vibrio*. *Vibrio* genus is opportunistic pathogens, i.e. organisms that normally exist in environmental maintenance and then develop from the nature of the saprophyte into pathogenic because of environmental conditions make it possible.

The present study aims to determine the species of *Vibrio sp* that causes disease in Bengkalis (Sumatera island) and Jepara (java island) shrimp farming ponds at the site. Itispostulated that several Vibrio species is indigenous to Indonesia, and this study will enrich the Gene-Bank database.

2. MATERIALS AND METHODS

The research was conducted in May-July 2009. This included sampling of shrimp in shrimp aquaculture ponds Bengkalis of Sumatra island, and from August to December 2009 for shrimp and pond water from BBPBAP (Balai Besar Pangembangan Budidaya Air Payau / Central for Brackishwater Aquaculture Development) Jepara for sampling of pond water and sea water. Isolation of Vibrio was conducted at the Integrated Laboratory of Marine Science Department University of Riau. Furthermore, the amplification of PCR (Polymerase Chain Reaction) and DNA sequencing were performed at the Biotech Center, Research Institute for Development of Technology (BPPT) in Serpong, Banten Province.

The materials used are giant tiger prawns, sea water samples, pond water, TCBS gelatin Merck, the TSA gelatin Merck, TSI gelatin Merck, a solution of crystal violet, safranin, iodine, immersion oil, 3% hydrogen peroxide (H2O2), tetrametyl-p-phenylendiamein 1%, alcohol, aquabides, methylated, NaCl 0.9%, MR-VP broth, methyl red reagent, bacterial culture, fastPrep ® DNA Kit (USA), agarose, TAE buffer 1x, 6x loading dye, SYBR safe, DNA marker 1 kb DNA Ladder (Fermentas; # SM0311/2/3), Taq DNA polymerase, 10x PCR buffer, dNTPs mix, primers 9f (5'-GAGTTTGATCCTGGCTCAG-3 '), 765R (5'-CTGTTTGCTCCCCACGCTTTC-3'), 1114R, (5'-CCCGGAACCCAAAAACTTTG-3 '), 25 mM MgCl2.

Tools that are used in this study include: Tomy MS-100R homogenizer, centrifuge machine Tomy/MX-301, PCR thermal Cycler (Takara Thermal Cycler Dice-TP model 600 v 2.00), UV Trans illuminator unit, BioRad electrophoresis and Gel documentation systems, and the AB 3130 Genetic Analyzer.

Samples of shrimp (Panaeus monodon) were taken in shrimp ponds in Bengkalis, Sumatra, Indonesia as many as 10 (ten) individuals about 2 months old. The similar type of shrimp samples were also taken from the Java Sea in Jepara Indonesia. Samples were taken by

observing the behavior and physical characteristics of the shrimp. Characteristics of shrimp taken showed that they movd slowly towards the response given, were weak, and had a paler color than the normally helthy shrimps. Shrimp samples were carried to thelaboratory in ice boxex. Samples of 1000mL sea water and ponds were collected from shrimp ponds and sea water on the beach on the island of Bengkalis. Shrimp samples were washed, dried, and weighed. The weight was 46.4 grams and was homogenated into 417.6 ml of sterile sea water (10^{-1}) . This mixture was diluted upto 10^{-3} dilution. The samples were then plated by the serial dilution method to TCBS media on petri dishes.

Colonies that grew were reinoculated in new media. Each different colony obtained were reinoculated and purified in three replications using TSA media.

The observation that was conducted directly identified (morphologically), among others: the observation on cell shape, colony color, colony size and type of colony. In addition, biochemical tests were also conducted to the bacteria test. Morphology Test and biochemical tests, namely: Gram stain, growth on TSI gelatin Medium, Catalase Test, oxidase test, Methyl Red test.

Polymerization Chain Reaction condition were : initial denaturation at 94°C for 2 minutes, annealing at 50°C for 40 second, polymerization at 72°C for i minute, denaturation at 94°C for 1 minute, 30 cycles. Sequencing of PCR samples were carried out by the ABI 3130 XL Genetic Analyzer Applied Biosystems. Mega BLAST analysis was carried out using the programs at <u>www.ncbi.nlm.nih.gov</u>, -was done, The sequences were also analyzed and allign using the program package Clustal X, Genedoc, TreeView and Bioedit. The results were presented by descriptive analysis in the form of tables and figures. To obtain dendogram, NJ program was used in Clustal X with a level of 100 x bootstrap.

3. RESULTS AND DISCUSSION

The sample of black tiger shrimp (*P. monodon*) were taken from ponds in Bengkalis, Riau, Sumatra and BPPT pond in Jepara Java Indonesia. Isolation of *Vibrio* from shrimp, pond water and sea water using TCBS resulted in 7 pure *Vibrio* isolates with respect to color, shape and size of the colony. To make it easier to identify during the study, those seven isolates were coded A, B, C, D, E, F, and G. In the next culturization, the media is gelatin TSA Merck. The seven isolates were studied, all colonies of bacterial isolates are commashaped (Table 1).

No	Isolate	Gram	Cell shape	Colony color	Motil	Oks idas e	Kata lase	Metil red	Glu kosa	Suk rosa	H2 S	Kons. DNA (ng/µl)
1	Α	-	comma	Yellow	+	+	+	+	+	-	+	108,43
2	В	-	comma	Blue Green	+	+	+	-	+	+	+	115,56
3	С	-	comma	Yellow	+	+	+	+	+	-	+	106,99
4	D	-	comma	Green	+	+	+	+	+	+	+	62,87
5	Е	-	comma	Blue Green	+	+	+	-	+	-	-	62,87
6	F	-	Comma	Yellow	+	+	+	-	+	+	+	69,92
7	G	-	comma	Yellow	+	+	+	-	+	+	+	83,91

Table 1. Results of Staining, Morphological and biochemical observations

Source: Primary Data

All Vibrio isolates showed oxidase and catalase positive. Tests using the medium for TSI to show the occurrence of glucose and sucrose fermentation and H2S gas by observing the color on for tilt and to erect. All isolates were positive, while for sucrose and glucose, A, C and E are negative and the rest were positive. Overall characteristics of each strain can be seen in Table 1.

Concentration of genomic DNA from each isolate that has been extracted can be known. This concentration compares the extracted DNA in units of micro-nano-grams per 1

liter of water, ranging between 62.87 ng / ug to 115.56 ng / ug, which represents the highest concentration and lowest concentration of D isolates are isolates H and I (Table 1).

Using DNA marker 1 Kb Ladder, all DNA fragments are visible on agarose gel size of 1500 bp. The size is consistent with the expected size of 16S rDNA genes of bacteria that is between 1500 to 1600 bp (Lusiano, 2007).

Electrophoresis results showed seven DNA fragment from Vibrio isolates that could continue through the process of sequencing, using primers 8F, 765R, and 1114R, performed in one direction as much as one-time use at every primary. The length of the DNA bases A obtained at 526 bp, 1015 bp D, E, 420 bp, 1020 bp H, and I 1020 bp.

The sequences obtained were submitted to the Gen-Bank in order to gain access number and get the code according to the desired strain by the researcher.

Isolat	Bacteria	Strain	Access Code	Homology (%)
А	Vibrio alginolyticus	FNS A08	FJ404761	98
В	Vibrio parahaemolyticus	FNS C08	FJ404763	99
С	Vibrio harveyi	FNS B08	FJ404762	98
D	Vibrio shilonii	FNS D08	FJ404764	98
E	Vibrio vulnificus	FNS E08	FJ404765	98
F	unculture bacterium 1	FNY F08	EU854942.1	93
G	Unculture bacterium 2	FNY G08	GQ075650.1	94

Table 2 Results	of BLAST	and Submit to	the GenBank
		und Duomit to	the oundame

According to Handayani (2008) 16S rDNA sequence homology of individual bacterial isolates by 16S rDNA sequences from GenBank database, it can be seen that there is no bacterial 16S rDNA sequences are identical.

The result of BLAST (Basic Local Alignment Search Tool) via http / / www.ncbi.nlm.nih.gov/, showed that the five strains were Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio shilonii, and Vibrio vulnificus. It is believed that having sequence similarities exceeding 97% of the World Bank is in the genes (Table 2). Meanwhile, two other strains already believed to be the genus Vibrio sp, but the species is unknown. Strain the sixth has 93% similarity with the bacterium Vibrio 6G2. Meanwhile, the seven strains have percentage 94% homology with several candidates Uncultured bacterium called bacteriu. Isolate the seven who had a top score is Uncultured bacterium 16S ribosomal RNA clone nbw171g06c1 partial gene sequences. Based on information obtained by accessing the code indicates that the bacteria with access code is not the bacterium Vibrio sp but rather a species of bacteria obtained from sediment. But the morphology and biochemical test results showed that isolates the seventh is a bacterium of the genus Vibrio (Table 1), and supported also by this strain can body on TCBS medium, which is a specific media bacterium Vibrio sp.

It is suspected that the two strains are Vibrio species native to Indonesia which is not in the genes World Bank. This is confirmed by Hagstrom et al (2000) stated that isolates which have 16S rDNA sequence similarities greater than 97% may represent the same species. While the sequence similarities between 93% -97% can represent identity at the genus level but different at the species level.

Phylogenetic tree makes connecting the branching points (nodes), which is the taxonomic unit, such as species or genes, while the tree roots are the points that act as a (common ancestor) for all organisms under consideration (Pramana, 2007).

Allignment sample sequences with sequences from Gen Bank data base performed using the program Clustal X. To obtain a NJ phylogenetic tree used in the Clustal X program with a level of 100 x bootstrap, and then results in the form of phylogenetic trees can be seen on the program TreeView. The phylogenetic tree is useful to show the phylogenetic relationship of each species that visits based on molecular characteristics

between species and among strains within the same species. Phylogenetic tree of several species of Vibrio bacteria can be seen in the picture below.

Figure 1. Phylogenetic tree Vibrio alginolyticus FNS A08

Figure 2. Phylogenetic tree Vibrio parahaemolyticus C08 FNS

Figure 3. phylogenetic tree Vibrio harveyi FNS B08

Figure 4. Phylogenetic tree Vibrio shilonii FNS D08

Figure 5. Phylogenetic tree Vibrio vulnificus FNS E08

Of the seven isolates, it could be seen from the phylogenetic relationship of the bacterium Vibrio sp, that five isolates was confirmed as existing isolate, but isolates G and H from the sequensing and philogenetic tree indicates that hey are not from reported bacteria Vibrio sp. Since_results of morphology and biochemical test showed that the isolates G and H are bacteria of the genus Vibrio, it may therefore be_provisionally concluded that isolates G and H aremost likely_new species of Vibrio.

Based on the results of molecular identification, V. FNS alginolyticus A08 were obtained with 98% homology level with a base length of 526 bp and FNS strain A08. These bacteria were Gram negative, catalase positive, oxidase positive and included in motile bacteria. V. alginolyticus growth is characterized by swarm on solid non-selective media. Another feature is, fermentation of glucose, lactose, sucrose, and maltose, forming a column measuring 0.8 to 1.2 cm in the yellow on TCBS media (Lane, 2004). Lethal toxin produced by V. original Swy alginolyticus strains isolated from sick kuruma shrimp (Penaeus japonicus) purified by Fast Protein Liquid Chromatography with hydrophobic interaction and gel filtration columns. The toxin is an alkaline serine proteases, showed maximum activity at pH 8 to 11 (Liu, and Lee, 1999). V. FNS parahaemolyticus C08 has a characteristic blue to greenish-colored colonies, have the nature of Fermentative, glucose, lactose, sucrose and gas production is positive. Meanwhile, methyl red and H2S negative. Our isolated strain had 99% homology to the GenBank reported strain. V. parahaemolitycus has a diameter of 3-5 mm, greenish-blue colony color, dark green colony center, has many flagella (Richie, 2005). Bacteria V. parahaemolitycus is a halophilic gram-negative bacteria are distributed in tropical coastal waters worldwide and causes gastroenteristis (De Paola et al, 1998).

Thermostable direct haemolysin (TDH), is a major virulence factor of V. *Parahaemolyticus*, was not toxic when heated at a temperature of 60-70 0C, but will retoxic when heated higher than 80 0C. Opposite phenomenon is known as the Arrhenius effect, been reminded of events that remain unexplained for 100 years. This suggests that this effect is associated with structural changes in proteins that produce fibrils (Fukui et al., 2005).

V. harveyi B08 FNS has characteristic yellow colonies on TCBS media, have the nature of Fermentative, methyl red, glucose and sucrose positive. While lactose negative and H2S gas production. Based on the results of molecular identification, the bacteria isolated from our study had 98% homology levelto the GenBank strain with a base length of 420 bp.

Liu and Lee (1999) states that the cysteine protease is a substance produced by pathogenic luminous bacteria V. harveyii 820 514, isolated from sick tiger shrimp (*Penaeus monodon*). Protease lethal to P. monodon with LD50 levels from 0.3 g protein pergram shrimp. Further stipulated that the cysteine protease is the main toxin produced by this bacterium. This protease is a cysteine protease first toxin found in Vibrio.

In addition, *V harveyi* VIB 645, highly pathogenic to the species of salmon and extraseluler products with a high level of hemolytic activity towards fish erythrocytes, was found to contain two closely-related hemolysin gene (vhhA and vhhB). While the majority of the tested strains contained only a single hemolysin gene (Zhang, Meaden, and Austin, 2001).

Vibrio shilonii have the characteristic green colonies on TCBS media, have the nature of Fermentative, methyl red, glucose, lactose and sucrose positive. While the production of gas and H_2S negative. Based on the results of molecular identification, the bacteria, we islated (DO8 FNS) had 98% homology level with the GenBank strain.

The model system of coral bleaching by bacteria has been studied extensively. Every summer, at least during the last 12 years, approximately 70% of reefs have shown the occurrence of bleaching. Organisms that cause coral bleaching is V. shilonii. These pathogens bind galactoside-containing receptor cells in the coral mucus, and then penetrate the rock layer, where bacteria grow, reaching> 108 bakteri/cm3 network. V. shilonii produce <u>a</u> toxin (PYPVYAPPPVVP) that blocks intracellular zooxanthellae photosynthesis. In the winter, when seawater temperature drops below 20 ° C, V. shilonii can not survive in the host coral and reefs to recover (Koren and Rosenberg, 2006).

Coral bleaching caused by infection of specific bacteria (as a refutation of the opinion of the influence of environmental stress) occurs when the zooxanthellae lost due to the influence of toxin produced by bacterial pathogens. Coral bleaching by bacteria occurs in the Mediterranean sea on scleractinian coral Oculina patagonica by V. shilonii (pathogens) and on Indian Ocean and the Red Sea on sea coral Pocillopora damicornis by the pathogen Vibrio corallilyticus (Haim et al., 2002).

V. vulnificus has the characteristic blue to green colonies on TCBS media, have the nature of Fermentative and glucose positive. While methyl red, lactose, sucrose, production of gas and H_2S negative. From the molecular identification, the bacteria, we isolated (E08 FNS) had 98% homology level with the type strain ported in GenBank.

During infection, *V. vulnificus* reach the intestine and then attack the blood flow to penetrate the intestinal mucosal wall of the host resulting in septicemia. Lee, Choi, and Kim, (2008) found that the toxin RtxA produced by V. vulnificus contributes to the cytotoxicity against intestinal epithelial cells.

4. CONCLUSIONS AND RECOMMENDATIONS

The results of this research shows that of the seven bacterial isolates from Bengkalis (sumatera Island) and Jepara (Java island) infected infected black tiger shrimp (*P. monodon* identified using analysis of 16S rDNA sequences, five strains were identified as Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio shilonii, and Vibrio vulnificus, with levels above 97% homology to reported GenBank sequences. The two other strains sequences are *Vibrio* strains_sequences that have not reported in GenBank. It is believed that these two strains are Indonesian indigenous *Vibrio* species. More indepth study us needed to verify this.

Further studies are needed to determine the toxic levels, and ability to harm caused by these two indigenous *Vibrio* species to the shrimps. Furtres studies are also required to understand how to prevent to understand how to prevent growth and infection of these bacteria to black tiger shrimp cultivation.

Appendix. 16S rDNA gene sequences

Isolat	Sekuen Gen 16S rDNA
А	5' TGGAGAGTTTGATCCTGGCTCAGATTGAACGCT
	GGCGGCAGGCCTAACACATGCAAGTCGAGCGGAAACGAGTTATCTGAACCTT
	CGGGGAACGATAACGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGGAAA
	TTGCCCTGATGTGGGGGGATAACCATTGGAAACGATGGCTAATACCGCATGATG
	CCTACGGGCCAAAGAGGGGGGACCTTCGGGCCTCTCGCGTCAGGATATGCCTAG
	GTGGGATTAGCTAGTTGGTGAGGTAAGGGCTCACCAAGGCGACGATCCCTAGC
	TGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCT
	ACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGC
	CATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGTCGTGA
	GGAAGGTGTTAATAGCATTTGACGTTAGCGACAGAAGAAGCACCGGCTAACT
	CCGTGCCAGCAGCCGCGGTA 3'
В	5' AGAGTTTGATCCTGGCTCAGATTGAACGCTGGC
	GGCAGGCCTAAGACATGCAAGTCGAGCGGAAACGAGTTATCTTAACCTTCGG
	GGAACGATAACGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGGAAATTGC
	CCTGATGTGGGGGGATAACCATTGGAAACGATGGCTAATACCGCATGATGCCTA
	CGGGCCAAAGAGGGGGGACCTTCGGGCCTCTCGCGTCAGGATATGCCTAGGTG
	GGATTAGCTAGTTGGTGAGGTAAGGGCTCACCAAGGCGACGATCCCTAGCTGG
	TCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACG
	GGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCAT
	GCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGTCGTGAGGA
	AGGTAGTGTAGTTAATAGCTGCATTATTTGACGTTAGCGACAGAAGAAGCACC
	GCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCG
	GAATTACTGGGCGTAAAGCGCATGCAGGTGGTTTGTTAAGTCAGATGTGAAAG
	CCCGGGGCTCAACCTCGGAATAGCATTTGAAACCTGCAGACTAGAGTACTGTA
	GAGGGGGGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGA
	AT 3 '
С	5' TTTGGAGAGTTTGATCCTGGCTCAGATTGAAC
	GCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGGAAACGAGTTATCTGAAC
	CTTCGGGGAACGATAACGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGG
	AAATTGCCCTGATGTGGGGGGATAACCATTGGAAACGATGGCTAATACCGCATA
	ATGCCTACGGGCCAAAGAGGGGGGACCTTCGGGCCTCTCGCGTCAGGATATGCC
	TAGGTGGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCCT
	AGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGAC
	TCCTACGGGAGGCAGCAGTGGGGGAATATTGCACAATGGGCGCAAGCCTGATG
-	CAGCCATGCCGCGTGTGTGAA 3'
D	5' AGAGTTTGATCCTGGCTCAGATTGAACGCTGG
	CGGCAGGCCTAACACATGCAAGTCGAGCGGAAACGAGTTAACTGACCCTTCG
	GGTGACGTTAACGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTGGGAAATT
	GCCCTGATGTGGGGGGATAACCATTGGAAACGATGGCTAATACCGCATAATGCC
	TTCGTGCCAAAGAGTGGGACCTTAGGGCCTCTCGCGTCAGGAGATGCCCAGGT
	GGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATACCTAGCTG
	GTCTGAGAGGATGATCAGCCACACTGGAAGTGAGACACGGTCCAGACTCCTA
	CGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCC
	ATGCCGCGTGTGTGAAGATGGCCTTCGGGTTGTAAAGCACTTTCAGCAGTGAG
	GAAGGCGGGTACGTTAATAAGTGCTCGTTTGACGTTAGCTGCAGAAGAAGCAC
	CGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATC
	GGAATTACTGGGCGTAAAGCGCATGCAGGTGGTTCGTTAAGTCAGATGTGAAA
	GCCCGGGGCTCAACCTCGGAACTGCATTTGAAACTGGCGGACTAGCGTACTGT
	AGAGGGGGGTAGAATTTCAGGTGTAGCGGTGCAATGCGTAGAGATCTGAAGG
E	
	UTUAUAUAUUUTUUAUAUTUUTAUUUUAUUUAUUAUUAUTUUUAATATTGCACA

ATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAGGGGCCTTCGGGT TGTAAAGCACTTTCAGTTGTGAGGAAGGGGGGGTGTTGTGAATAGCAGCATCATT TGACGTTAGCAACAGAAGAAGCACCGGCGAACTCCGTGCCAGCAGCCGCGGT AATACGGAGGGTGCGAACGTTAATCGGAATTACTGGGCGTAAAGCGCATGCA GGTGGTTTGTTAAGTCACATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCAT TTGAGACTGGCAAACTAGAGTACTGTAGAGGGGGGGGAAGAATTTCAGGTGTAG CGGTGTAATGCGTAGAGATCTGAAGGAATACCGGTGGCGAAGGCGTCCCCCT GGACAGATACTGACACTCAGATGCGAAAGCGTGGGGAGCAAACAGGTTTGCG AAGACGCAGGTGTGCCTTCGGGAAGCTCTGAGACAG **3'**

REFERENCES

- Alcamo, I, E, 1983. Laboratory Fundamentals of Microbiology. Addison Wesley Publishing Company, Inc. New York. 324 pp.
- Andrito, W. 2007. Karakterisasi Molekuler Bakteri Probiotik pada Saluran Pencernaan Ikan Kerapu Bebek (*Chromileptes altivelis*) Berbasis Teknik 16 S rDNA. Skripsi, Faperika Universitas Riau. Pekanbaru. (Tidak diterbitkan).

Molecular Characterization of Probiotic Bacteria in the Gastrointestinal Grouper Duck (Chromileptes altivelis) 16 S rDNA-based techniques. Thesis, University of Riau Faperika. Pekanbaru. (Unpublished).

- Buwono, D. 2004. Jenis Penyakit pada Ikan (Finfish) Budidaya Air Payau. Balai Besar Pengembangan Budidaya air Payau Jepara. Online <<u>http://www.dkp.go.id/content.php?c=1843</u>>.
- Types of Diseases of Fish (Finfish) Brackishwater Aquaculture. Central Jepara Brackishwater Aquaculture Development water. Online <http://www.dkp.go.id/content.php?c=1843>.
- De Paola, A, C.A. Kaysner, John, B. 1998. Environmental Investigation of *Vibrio* parahaemolitycus in oyster after Outbreakes in Washington, Texas and New York. Online http://www.aem.asm.org/egi/content/full/66/11/4649>.
- Fukui *et al.* (2005). Thermostable direct hemolysin *of Vibrio parahaemolyticus* is a Bacterial Reversible Amyloid Toxin. Biochemistry, 44 (29), pp 9825–9832. Online<<u>http://pubs.acs.org/cgi-bin/abstract.cgi/bichaw/2005/44/i29/abs/bi050-</u> <u>311s.html</u>. (Diakses 05 November 2008).
- Handayani, A. 2008. Karakteristik Molekuler Bakteri Vibrio sp Penyebab Penyakit pada Udang Windu (Paneus monodon) dengan Sequence DNA 16S. Pekanbaru. Skripsi Faperika Unri. (tidak diterbitkan).
- Molecular characteristics of Vibrio sp Bacteria Cause Disease in Tiger Shrimp (Paneus monodon) with 16S DNA Sequence. Pekanbaru. Thesis Faperika UNRI. (Unpublished).
- Hagstrom, A.J.F. Pinhassi and U.L. Zweiefel. 2000. Biogeoghraphycal Diversity Among Marine Bacterioplankton. Aquatic Microbial Technology, vol 21: 231-244.
- Haim, Ben.2002. Disease Overview. Coral Disease Identification and Information. www.coral.noaa.gov/seakeys/real_data.shtml/. (Accessed 16 September 2008)
- Harth, E., Romero, J., Torres, R. And Espejo, R. 2007. Intragenomic Heterogenity and Intergenomic Recombination among *Vibrio parahaemolitycus* 16S rDNA. Microbiology, Vol 153; p 2640-2647.
- Liu, P.C., and Lee, K.K. 1999. Cysteine Protease is a Major Exotoxin of Pathogenic Luminous Vibrio harveyi in The Tiger Prawn, Penaeus monodon. Letters in Applied

Microbiology, Vol 28, Iss 6, Januari; p. 428-430. Online<http://www3.interscience.wiley.com/journal/119073105/abstract>.(Accesse d 5 November 2008)

- Lopillo, R. 2000. Isolasi dan Identifikasi Bakteri Heterotropik pada Tambak yang Antagonis Terhadap Vibrio harveyi dan Vibrio parahaemolyticus. Skripsi, Faperika Unri. Pekanbaru, 27 hal (tidak diterbitkan)
- Isolation and Identification of heterotrophic bacteria on the farm that antagonists against Vibrio harveyi and Vibrio parahaemolyticus. Theses, Faperika UNRI. Pekanbaru, 27 p. (unpublished)
- Lusiano, A. 2007. Isolasi dan Karakterisasi Bakteri Hidrokarbonoklastik dengan Sekuen 16S rDNA dari Sedimen Perairan Dumai. Skripsi. Fakultas Perikanan dan Ilmu Kelautan Universitas Riau. (tidakditerbitkan)
- Isolation and Characterization of Bacteria hydrocarbonoclastic with 16S rDNA sequences from sediments of Dumai waters. Thesis. Faculty of Fisheries and Marine Sciences University of Riau. (Unpublished)
- Parjitno. 1995. Primadona Penyakit Udang Windu di Tambak. Makalah Penelitian Nasional Keterampilan dan Bina Usaha Mandiri bidang Budidaya Air Payau dan tawar. Malang: Mahasiswa Pemuda Pedesaan Brawijaya. Malang. 17 hal.
- Phenomena of Tiger Shrimp Diseases in Pond. Papers of the National Research Skills and Business Development of Brackishwater Aquaculture Mandiri and fresh. Poor: Rural Youth Student UB. Malang. 17 pages.
- Radjasa, K. O. 2006. Rapid Grouping of Marine Psychrotrophic Bacteria Using Restriction Fragent Length Polymorphism Analysis of PCR Amplified 16S. Internet. <u>http://www.karnaradjasa.com</u>.
- Reed, A.P. and Floyd, R. F. 2002. Vibrio Infection of Fish. University of http://edis.ifas.ufi.edu/pdffiles/FA/FAO3600.pdf.
- Rhodes, A. N., J. W. Urbance, H. Youga, H. Corlew-Newman, C. A. Reddy, M. J. Klug, J. M. Tiedje, D. C. Fisher, 1998. Identification of Bacterial Isolates Obtained From intestinal Contents Associated with 12.000 years old Mastodon Remain, Appl. Ebviron. Microbiol. 64: 651-658.
- Richie, J.P., M.D. 2005. Analisis Bakteri Vibrio Pada Udang Windu (*Penaeus monodon*) Tambak di Bengkalis Propinsi Riau. Skripsi, Faperika UNRI. Pekanbaru (tidak diterbitkan).
- Vibrio Bacteria Analysis On Tiger Shrimp (Penaeus monodon) ponds in Bengkalis, Riau Province. Thesis, Faperika UNRI. Pekanbaru (unpublished).
- Wren, B.W. 1992. Bacterial Exotoxin Interaction. In Moleculer Biology of Bacterial Infections. Current Status and Future Prospective. (Eds.C. E. Hormacce, C.W. Penn and C.I. Smith). P.127-148. Cambridge University Press.
- Zhang, X.H., Meaden, P.G., and Austin, B. 2001. Duplication of He,olysin Genes in a Virulent Isolate of *Vibrio harveyi*. Applied and Environmental Microbiology, Vol. 67, No 7, July; p. 3161-3167. Online<http://www.pubmedcentra.nih.gov/articlender.fcgi?tool=pubmed>. (Accessed 28 September 2008).

<000<

http://repository.unri.ac.id/

Repository University Of Riau

Repository University Of Riau PERPUSTAKAAN UNIVERSITAS RIAU http://repository.unri.ac.id/