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TWO STEP METHOD WITHOUT
EMPLOYING DERIVATIVES FOR SOLVING A

NONLINEAR EQUATION

M. Imran, Agusni, A. Karma, S. Putra

Abstract. We discuss an iterative method for finding root of a nonlinear equation
employing central differences to avoid derivatives in the method. We show that this
two step method is of order three. Numerical simulations show that the method is
comparable with others third order methods.

1. INTRODUCTION

Finding the root of a nonlinear equation, f(x) = 0, is a classic problem in
numerical analysis. Recently, many iterative method have been developed
to solve a nonlinear equation by combining two or more existing method
[2, 6, 8, 10, 11]. Kasturiarachi [5] combines Newton’s method and secant
method, that is

x∗n = xn −
f(xn)
f ′(xn)

(1)

xn+1 = xn −
f2(xn)

f ′(xn)(f(xn)− f(x∗n))
. (2)
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It is shown that this is a third order method. Combination of Secant method
and Newton’s method has been discussed without analyzing the order of
convergence of the method by Demidovich and Maron (See[3], Sec. 4.7).

To avoid the derivative appearing in (1) and (2), Jain [4] approximates

f ′(xn) =
f(xn + f(xn))− f(xn)

f(xn)

so that equation(1) becomes

x∗n = xn −
f2(xn)

f(xn + f(xn))− f(xn)
(3)

which is Steffensen’s method, a good competitive for Newton’s method with-
out employing a derivative in its formula. Using this strategy, he proposes
the the third order method using three function evaluation per iteration as
follows:

x∗n = xn −
f2(xn)

f(xn + f(xn))− f(xn)
(4)

xn+1 = xn −
f3(xn)

(f(xn + f(xn))− f(xn))(f(xn)− f(x∗n))
. (5)

The aim of this paper is to propose an alternative method of order three
without employing derivative in its formulae and to do some numerical com-
parisons with some available third order methods.

2. PRELIMINARY RESULTS

Definition 2.1 (See [1]) A sequence of iterates {xn : n ≥ 0} is said to
converge with order p ≥ 1 to a point α if

|α− xn+1| ≤ c|α− xn|p, n ≥ 0

for some c > 0. If p = 1, the sequence is said to converge linearly to α.
In that case, we require c < 1; the constant c is called the rate of linear
convergence of xn to α.

Definition 2.2 (See [11]) Let α be a root of the function f and suppose
that xn−1, xn, xn+1 are closer to the root α. Then the computational order
of convergence p can be approximated using the formula

p ≈ ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)|

(6)
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3. PROPOSED METHOD

If we approximate the derivative appearing in (1) and (2) with central
difference, that is

f ′(xn) =
f(xn + f(xn))− f(xn − f(xn))

2f(xn)

we have the following iterative formulae

x∗n = xn −
2f2(xn)

f(xn + f(xn))− f(xn − f(xn))
(7)

xn+1 = xn −
2f3(xn)

(f(xn + f(xn))− f(xn − f(xn)))(f(xn)− f(x∗n))
. (8)

We prove below that the iterative method (7) and (8) is of order 3.

Theorem 3.1 Let f : D ⊂ R → R for an open interval D. Assume that f
has first, second, and third derivatives in the interval D. If f has a simple
root at α ∈ D and x0 is sufficiently close to α, then the new method defined
by (7) and (8) satisfies the following error equation:

en+1 = c2
2e

3
n +O(e4

n),

where en = xn − α and

cj =
f (j)(α)
j! f ′(α)

, j = 2, 3.

Proof:
Let α be a simple root of f(x) = 0, and xn = α + en. Denote

Fi = f (i)(α), i = 1, 2, 3 so that cj =
Fj

j!F1
, i = 2, 3.

Taylor expansion of f(xn), f(xn + f(xn)) and f(xn − f(xn)) about x = α,
which is a zero of f , is

f(xn) = F1(en + c2e
2
n + c3e

3
n +O(e4

n)), (9)

f(xn + f(xn)) = F1

[
(1 + F1)en +

(
3F2
2 + c2 + F1F2

2

)
e2
n

+
(

2F3
3 + c2F2 + c3 + F1F3

2 + F3F1
6

)
e3
n +O(e4

n)
]
, (10)
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and

f(xn − f(xn)) = F1

[
(−1 + F1)en +

(
−3F2

2 + c2 + F1F2
2

)
e2
n

+
(
−2F3

3 − c2F2 + c3 + F1F3
2 + F3F1

6

)
e3
n +O(e4

n)
]
. (11)

Using (9)–(11), we obtain after simplifying

2f2(xn)
f(xn + f(xn))− f(xn)

= (2c3+c22)e3
n+2c2e2

n+en+O(e4
n)

1+3c2en+(2c22+
c2
2F1

+
F1F3

6
+4c3− c3

2F1
)+O(e4

n)
(12)

Recalling

(1 + x)(1− x + x2 − x3 + x4 − x5 + · · ·+O(xn)) = 1 +O(xn) (13)

and after some algebra we can express (12) as

2f2(xn)
f(xn+f(xn))−f(xn) = en − c2e

2
n +

(
− 2c3 − F1F3

6 + 2c2
2 − c2

2F1

)
e3
n +O(e4

n).
(14)

On substituting (14) into (7) and simplifying yields

x∗n = α + c2e
2
n −

(
− 2c3 −

F1F3

6
+ 2c2

2 −
c2

2F1

)
e3
n +O(e4

n). (15)

Expanding f(x∗n) about x = α, computing f(xn)
f(xn)−f(x∗n) , noting (13) and

simplifying, we end up with

f(xn)
f(xn)−f(x∗n) = 1 + c2en +

(
2c3 − 2c2

2 + c2
2F1

+ F1F3
6 − c3

2F1

)
e2
n

+
(
− 2c3

2 + c2F1F3
6 − c2c3

2F1
+ c2c3 + c22

2F1

)
e3
n +O(e4

n). (16)

Furthermore, adding (14) and (16), and simplifying, we obtain

2f3(xn)
(f(xn+f(xn))−f(xn−f(xn)))(f(xn)−f(x∗n)) = en − c2

2e
3
n +O(e4

n). (17)

On substituting (17) into (8), we obtain, the following equation error

en+1 = c2
2e

3
n +O(e4

n).

This ends the proof.
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4. NUMERICAL COMPARISONS

In this section we present numerical comparisons of proposed method
(SS), Newton method (NM), Newton Secant method (NS) and Jain method
(JM) to solve a nonlinear equation. We see the number of iteration of each
method for a given accuracy and the COC of each method. We stop the
iteration process if one of the following criteria satisfied

(a) f ′(xn) = 0, for NM and NS methods.
(b) Maximum iteration=1000.

(c) If |f(xn+1)| < 10−10.

(d) If|xn+1 − xn| < xn+1 × 10−10.

We use the following test functions:

f1(x) = x3 − 3x2 − 5, α = 3.42598875736162212607, [5]

f2(x) = x4 − 3x3 − 54x2 − 150x− 100, α = −1.0, [7]
f3(x) = 0.5 + sin(x), α = −0.52359877559829887307, [7]
f4(x) = x exp (2x), α = 0.0.

In the Table 1, NA stands for the method is not applicable, NC is the
method is not convergent to the given root, and the start * in the number
of iteration in the third nonlinear function indicates that the method is
convergent to a different root. From Table 1, we see that for the first and
fourth functions, in terms of the number of iteration, SS-method method is
better than others mentioned methods. In most cases, The SS-method is
better than JM-method, in term of the number of iteration. All the mention
methods cannot differentiate between the roots and the asymptotic trend
of the function as occurs for initial guesses −4.0,−2.0,−1.0 in the third
nonlinear function. Overall SS-method is comparable with JM-method.

Acknowledgements This research was supported by Laboratorium Re-
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71/UN.19.2/PL/2011.
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Table 1: Comparisons of the number of iterations and the COC of the
discused methods

f(x) x0
Number of Iterations COC

NM NS JM SS NM NS JM SS

x3−3x2−5

−2.0 15 10 34 16 2.00 2.86 3.06 3.15
−0.9 11 > 1000 22 13 2.00 – 3.01 3.20
0.0 NA NA 18 16 – – 2.95 3.23
1.5 10 5 16 12 2.00 3.01 2.99 3.35
5.0 6 4 5 5 2.00 2.99 2.86 3.24

x4 − 3x3 −
54x2 −
150x− 100

−1.9 9 6 9 8 2.00 3.12 3.20 3.35
−1.6 7 4 6 6 2.08 3.12 3.13 3.29
−1.2 5 4 4 4 2.00 3.13 3.30 3.49
−0.4 5 4 5 5 2.00 2.99 3.09 3.24
0.0 6 4 5 5 2.00 2.96 2.65 3.54

0.5 + sin(x)

−1.0 5 3 4 3 2.00 2.48 3.03 3,41
−0.5 3 2 2 2 1.99 INF 2.5 INF
0.0 4 3 3 3 1.99 INF 2.4 INF
1.0 7* 4 4* 5* 2.00 3.17 3.51 3.01
1.5 6* 6* 3* 7* 2.00 2.49 2.62 INF

x exp (2x)

−4.0 NC NC NC NC – – – –
−2.0 NC NC NC NC – – – –
−1.0 NC NC NC NC – – – –
−0.3 8 5 7 5 2.00 2.90 3.00 3.02
0.3 6 4 4 4 2.00 2.97 3.00 3.01
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