II. TINJAUAN PUSTAKA

2.1 Kelapa sawit (*Elaeis guineensis* Jacq.)

Syarat tumbuh tanaman kelapa sawit yaitu lama penyinaran matahari yang baik untuk kelapa sawit antara 5-7 jam/hari, curah hujan tahunan 1.500-4.000 mm, temperatur optimal 24-28°C. Ketinggian tempat antara 1-500 m dpl (di atas permukaan laut), Kelembaban optimum sekitar 80-90%, kecepatan angin 5-6 km/jam untuk membantu proses penyerbukan. Kelapa sawit dapat tumbuh pada jenis tanah Podzolik, Latosol, Hidromorfik Kelau, Alluvial atau Regosol, tanah gambut saprik, dataran pantai dan muara sungai. Tingkat keasaman (pH) yang optimum 5,0-5,5 (Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian, 2008)

Kelapa sawit (*Elaeis guineensis* Jacq) merupakan tanaman multiguna. Kelapa sawit tumbuh dengan baik pada dataran rendah di daerah tropis yang beriklim basah dengan curah hujan 1500-3000 mm/ tahun dan merata sepanjang tahun dengan period debulakan yang tidak lebhidaritigulan. Temperatur yang dikehendaki adalah 29-33°C dan malam 22-24°C. Tanamankelapasawitbaikutumbuh pada ketinggian< 500 m daripermukaanlaut, sementenghendaksisinarmataharahiriminimal 5 jam/hari (Pahan, 2006).

Hasil pengolahan Tandan Buah Segar (TBS), bukan hanya hasil olahan utamanya yang berupa minyak sawit dan minyak inti sawit saja yang bisa di gunakan, tetapi hasil ikutan dan limbahnya masih bisa dimanaatkan. Mulai dari bahan makanan ternak, sebagai pupuk, sampai pemanfaatan sebagai bahan bakar (Penebar Swadaya, 1994)

Tingkat produkti tanaman kelapa sawit di Indonesia pada tahun 2006 telah mengalami peningkatan dari pada Malaysia yang dapat di lihat pada tabel.1
WORLD MAJOR PRODUCERS OF PALM OIL 1998-2007(000) TONES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>510</td>
<td>6250</td>
<td>7050</td>
<td>8080</td>
<td>9370</td>
<td>10.2</td>
<td>12.3</td>
<td>14.1</td>
<td>16.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Malaysia</td>
<td>832</td>
<td>10.5</td>
<td>10.8</td>
<td>11.8</td>
<td>11.9</td>
<td>13.3</td>
<td>13.9</td>
<td>14.9</td>
<td>15.0</td>
<td>15.8</td>
</tr>
<tr>
<td>Thailand</td>
<td>475</td>
<td>560</td>
<td>525</td>
<td>625</td>
<td>600</td>
<td>690</td>
<td>735</td>
<td>700</td>
<td>860</td>
<td>1020</td>
</tr>
<tr>
<td>Nigeria</td>
<td>690</td>
<td>720</td>
<td>740</td>
<td>770</td>
<td>775</td>
<td>785</td>
<td>790</td>
<td>800</td>
<td>815</td>
<td>835</td>
</tr>
<tr>
<td>Colombia</td>
<td>424</td>
<td>500</td>
<td>524</td>
<td>548</td>
<td>528</td>
<td>527</td>
<td>632</td>
<td>661</td>
<td>713</td>
<td>780</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>210</td>
<td>264</td>
<td>336</td>
<td>329</td>
<td>316</td>
<td>326</td>
<td>345</td>
<td>310</td>
<td>365</td>
<td>395</td>
</tr>
</tbody>
</table>

Produksi buah kelapa sawit berhubungan dengan unsur hara yang terdapat pada tanaman itu sendiri, serta dapat menjadi indikator kondisi unsur hara yang terdapat pada tanaman. Produksi tandan buah segar kelapa sawit yang mengandung unsur hara N sebesar 1.09%, P sebesar 0.015%, dan K sebesar 0.02% selama masa panen 13 tahun menunjukkan rata-rata hasil sebesar 15.7 ton TBS/ha/tahun (Pangudijatno, 1987).

2.2 Sifat Fisik Tanah

Pertumbuhan tanaman tidak hanya bergantung pada tersedianya unsur hara yang seimbang, tetapi pada harus di tunjang oleh keadaan fisik dan kimia tanah itu sendiri. Pentingnya sifat-sifat fisik dan kimia tanah yang baik dalam menunjang
pertumbuhan tanaman sering tidak disadari karena kesuburan tanah selalu dititik beratkan hanya pada kesuburan kimianya saja (Rohlini dan Soeprapto, 1989).

Terdapat hubungan yang positif antara sifat fisik tanah, permeabilitas, total ruang pori, dan kerapatan bongkah (Martoyo, 1992). Semakin baik sifat fisik tanah semakin baik pula pertumbuhan dan perkembangan tanaman. Makin mudah akar menembus tanah biasanya pertumbuhan tanaman secara keseluruhan akan semakin cepat dan akan memberikan hasil yang tinggi.

Porositas tanah tinggi jika kandungan bahan organik dalam tanah tinggi. Tanah dengan tekstur pasir banyak memiliki pori makro sehingga sulit untuk menahan air (Sarwono Hardjowigeno, 1993).

Menurut Firmansyah (2003) bentuk degradasi tanah yang terpenting di kawasan Asia antara lain adalah erosi tanah, degradasi sifat kimia berupa penurunan kadar bahan organik tanah dan pencucian unsur hara. Perubahan
penggunaan lahan dan pola pengelolaan tanah menyebabkan perubahan kandungan bahan organik tanah. Semakin intensif penggunaan suatu lahan, makin rendah kandungan bahan organik tanah. Oleh karena itu tanah yang terdegradasi perlu dilakukan upaya rehabilitasi. Degradasi tanah biasanya dievaluasi dari sifat fisik dan kimia tanah.

Fauck (1977) mengatakan bahwa penurunan produktivitas tanah banyak terjadi pada pertanian lahan kering, terutama pada lahan miring. Proses terjadinya penurunan produktivitas tanah dapat berlangsung dalam waktu yang lama. Seperti akibat proses pembentukan tanah (pedogenesis) dan dapat pula terjadi dalam waktu tahunan yang terutama disebabkan adanya musim kemarau atau musim hujan. Peristiwa tersebut secara tidak langsung mengganggu kandungan bahan organik tanah, nitrogen tanah, pH tanah dan sebagainya.

Produksi optimum suatu tanaman dapat dicapai dengan pemupukan dan usaha perbaikan sifat fisik tanah. Akan tetapi pemupukan tidak akan berhasil dan menguntungkan sebelum usaha-usaha pencegahan erosi, perbaikan keadaan air dan udara, usaha pemeliharaan bahan organik, perbaikan tanah yang telah rusak, atau perbaikan drainase (Arsyad, 2000).

Pemberian bahan organik sebagai pupuk memberikan pengaruh yang sangat kompleks bagi pertumbuhan tanaman, terutama karena kemampuannya memperbaiki sifat fisik dan kimia tanah (Pahan, 2006). Perbaikan sifat fisik tanah terutama sekali terjadi karena meningkatnya kegiatan mikroorganisme di dalam tanah sehingga struktur tanah menjadi lebih baik, aerase tanah tanah dan kapasitas dalam menahan air meningkat, srtu adanya bahan organik akan berfungsi melindungi permukaan tanah dari erosi dan pencucian hara.
2.3 Tandan Kosong Kelapa Sawit

Kosong kelapa sawit merupakan bahan organik yang mengandung unsur hara utama N, P, K dan Mg. Selain mampu memperbaiki sifat fisik tanah, kompos tandan kosong sawit diperkirakan mampu meningkatkan efisiensi pemupukan sehingga pupuk yang digunakan untuk pembibitan kelapa sawit dapat dikurangi (Lalang Buana, et al., 2003). Secara fisik tandan kosong kelapa sawit terdiri dari berbagai macam serat dengan komposisi antara lain sellulosa sekitar 45.95%, hemisellulosa sekitar 16.49% dan lignin sekitar 22.84% (Darnoko, et al., 2002 dalam Suluhkarsaka, 2010).

Persentase tandan kosong kelapa sawit terhadap tandan buah segar sekitar 20% dan setiap ton tankos mengandung unsur hara N, P, K dan Mg berturut-turut setara dengan 3 kg Urea, 0,6 kg CIRP, 12 kg MOP, dan 2 kg kieserite. Dengan demikian dari satu unit PKS kapasitas olah 30 ton TBS/ jam atau 600 ton TBS/hari bisa menghasilkan pupuk N, P, K dan Mg setara dengan 360 kg Urea, 72 kg CIRP, 1440 kg MOP, dan 240 kg kieserite (Lubis dan Tobing, 1989 dalam Subdit Pengelolaan Lingkungan, 2006).

Tandan kosong kelapa sawit adalah salah satu produk sampingan berupa padatan dari industri pengolahan kelapa sawit. Ketersediaan tandan kosong kelapa sawit cukup signifikan bila ditingkatkan berdasarkan rata-rata jumlah produksi tandan kosong kelapa sawit terhadap total jumlah tandan buah segar yang diproses. Rata-rata produksi tandan kosong kelapa sawit adalah berkisar 22% hingga 24% dari total berat tandan buah segar yang diproses di pabrik kelapa sawit (Darnoko, 2002)

Tandan kosong kelapa sawit dapat dimanfaatkan sebagai bahan organik bagi pertanaman kelapa sawit secara langsung maupun tidak langsung. Pemanfaatan secara langsung ialah dengan menjadikan TKKS sebagai mulsa sedangkan secara tidak langsung dengan mengomposkan terlebih dahulu sebelum digunakan sebagai pupuk organic (Happy Widyastuti & Tri-Panji, 2000)

Tandan kosong kelapa sawit dapat dimanfaatkan sebagai bahan untuk pembuatan pupuk kompos dengan proses fermentasi dan dimanfaatkan kembali untuk memupukan kelapa sawit itu sendiri. Penggunaan pupuk tandan kosong
kelapa sawit dapat menghemat penggunaan pupuk kalium hingga 20%. 1 ton tandan kosong kelapa sawit dapat menghasilkan 600-650 kg kompos (Marhaini, 2009).

Pahan (2006) menyatakan bahwa aplikasi janjang kosong kelapa sawit dapat meningkatkan proses dekomposisi sehingga kandungan fisik, kimia dan biologi pada tanah meningkat serta membantu dalam peremajaan tanah untuk jangka waktu lama dalam rangka mempertahankan produksi TBS agar tetap tinggi. Selain itu, aplikasi janjang kosong dapat menurunkan temperature tanah, mempertahankan kelembaban tanah dan mengurangi kerugian nutrisi melalui proses pencucian dan aliran permukaan atau menjaga terjadinya erosi tanah pada daerah curah hujan tinggi.

Aplikasi TKKS langsung sebagai mulsa pada pertanaman kelapa sawit merupakan salah satu alternatif pemanfaatan TKS yang mulai banyak dilakukan di beberapa kebun. Sebagai sumber bahan organik yang kaya unsur hara, penggunaan TKKS sebagai mulsa diharapkan dapat meningkatkan kadar bahan organik tanah dan kandungan hara tanah, juga dapat memperbaiki sifat fisik tanah seperti struktur tanah, aerasi dan kemampuan menahan air (water holding capacity) (Silver, et al., 1997 dan RRIM, 1991 dalam Suluhkarsaka, 2010).

Pemberian tandan kosong kelapa sawit dalam bentuk mulsa dapat menambah unsur hara, meningkatkan kandungan bahan organik yang sangat diperlukan bagi perbaikan sifat fisik dan kimia tanah. Dengan meningkatnya bahan organik tanah maka struktur tanah semakin mantap dan kemampuan tanah menahan air akan bertambah baik. Selain itu pemberian tandan kosong kelapa sawit juga dimaksudkan untuk mencegah terjadinya erosi dan pencucian unsur hara (Edy Lasmayadi., 2008)

Bahan organik sebagai bahan rehabilitasi juga didapat dari limbah, terutama limbah industri kelapa sawit yang banyak di luar Pulau Jawa. Manik (2002) menyatakan bahwa penambahan tandan kosong kelapa sawit sebanyak 96 Mg ha-1 mampu meningkatkan pH tanah, kandungan P, K, Mg, dan KTK tanah, serta meningkatkan produksi tandan buah segar sebesar 16,3%.

Menurut Siahaan (1997) aplikasi TKS sebagai mulsa berpengaruh terhadap produksi TBS kelapa sawit. Aplikasi TKS dengan dosis 40 dan 60 ton
TKS/ ha/ tahun sebagai mulsa tanpa aplikasi pupuk standar dapat meningkatkan produksi secara berturut-turut 11% dan 13% di atas produksi kontrol (dilakukan pemupukan standar tetapi tanpa aplikasi TKS), sedangkan aplikasi 40 ton TKS/ ha yang dikombinasikan dengan 60% dosis pupuk urea dan RP dari standar kebun dapat meningkatkan produksi TBS sebesar 34% dari perlakuan standar.