R i a n t i H e l m i, M o n i k a2012-11-102012-11-102012-11-09978-979-1222-95-2https://repository.unri.ac.id/xmlui/handle/123456789/451Let i? be a Dedekind domain with infinitely many primes and {/) C R[X] a principal prime ideal which is not maximal. Let m be a maximal ideal of R[X] and n be a maximal ideal of R[X]/ (/). Then localization of R[X]/(/) at n is principal if and only if there exist t in such that mi?[X]ni =enDedekind domain,localizationmaodmal idealT H E M A X I M A L I D E A L O F L O C A L I Z A T I O N O F R I N G P O L Y N O M I A L O V ER D E D E K I N D D O M A INArticle