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ABSTRACT

Let R be a Dedekind domain with infinitely many primes and {f} C R[X] a principal prime
ideal which is not maximal. Let m be a maximal ideal of R{X] and n be a maximal ideal of
R[X]/{f). Then localization of R[X]/{f} at n is principal if and only if there exist ¢ in R{X]n
such that mR[X]n = (¢, f}.
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INTRODUCTION

Integral domain R with field of fraction Q(R) ia a Dedekind domain if R are Noetherian,
integrally closed in @Q(R) and every nonzero prime ideal is maximal ideal of R. Some examples
of Dedekind domains are the ring of integers, the polynomial ring F[.X] in one variable over any
field F, and any other principal ideal domain, but not all Dedekind domains are principal ideal
domains.

Localization is systematic methed of adding multiplicative inverses to a ring. The localization
of R by S can be denoted by S~'Ror Rg . If R is integral domain with field of fractions Q{R)
, and p is prime ideal of R , then the localization of R at p is the subring

Ry = {g € Q(R) ;r € R and s inR\p}

of Q(R) . It is a local ring, with maximal ideal pR;. In this work we proof the following : Let
R be a Dedekind domain with infinitely many primes and {f) C R[X] a principal prime ideal
which is not maximal. Let m be a maximal ideal of R[X] and n be a maximal ideal of R[X]/{f}.
Then localization of R[X]/(f} at n is principal if and only if there exist ¢ in R[X|m such that

MR X]m = (t, ).
DEDEEKIND DOMAIN AND LOCALIZATION
A Dedekind domain is an integral domain satisfying the following three conditions :
1. R is Noetherian ring.
2 R is integrally closed.
X 3. Every nonzero prime ideal of R is maximal.

A Principal Ideal Domain (PID) satisfies all three conditions and therefore a Dedekind Do-
main. Hillman (1986) has proved that no maximal ideal of ring polynomial over a Dedekind
domain is principal.

Let R be aring and § C R a multiplicative set; that is, suppose that :
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1. S#@danle s
2. fa,beSthenabe S;.

Suppose that f : R — B is a ring homomorphism satisfying the two conditions :

1. f(z)isa unitin Bforallz€ S

2. If g: R — B' is a homomorphism of rings taking every element of S to a unit of B' then
there exist a unique homomorphism h : B — B’ such that g = hf.

Ring B satisfying the previous conditions is called the localization or the ring of fractions
of R with respect to S.We write B = S~!R or R,, where

S“1Rz{—§eQ(R) .r € Rdan s € 5)
Now define the following operations on B

o a -1 a y a _ ab4a’d

Furthermore, define f : R — S™!R with f(a) = £, for all @ € R, and f is a ring homomor-
phism. :

Theorem 2.1. (i) All the ideals of R, are of the form IR,, with I an ideal of R. _
(it} Every prime ideal of R, is of the form pR, with p a prime ideal of R disjoint from S, and
conversely, pR, is prime in R, for every such p.

Let p be a prime ideal of R, and set S = R — p. In this case we usually write R, for R,.
the localization Ry is a local ring with maximal ideal pR,. Indeed, as we saw in theorem before,
pR; is a prime ideal of R,, and furthermore, if J C R, is any proper ideal then ] = JN R is
an ideal of R disjoint from R ~ p, and so I C p, giving J = IR, C pR,. The prime ideals of R,
correspond bijectively with the prime ideals of R contained in p.

Theorem 2.2, Letp is a prime prim of R, then : (i} There is a one-one correspondence between
the set of prime ideals of R contained in p and the set of prime ideals of Ry.
(i) The ideal pRy in R, is the unique mazimal ideal of R,.

The result give us the following definition " A local ring is a commutative ring with identii-
which has a unique maximal ideal.”

Example : 1. Every field is a local ring with {0} is its maximal ideal. 2. if p is pruue
and 1 > 1, then Zy» is local ring with unique maximal ideal (p}. Let R is Dedekind domain
and (f) C R{X] a principal prime ideal which i3 not maximal. Let m is maximal ideal of R[X]
and R[X], is locahzatlon of R[{X] at m. Then, no maximal ideal of R[X], is principal and
MR[X]m/ (mB[X]wm)? is two dimensional vektor space over the field R[X]w/mR[X]m.(Helmi,
2009).

THE MAXIMAL IDEAL OF LOCALIZATION OF RING POLYNOMIAL OVER
DEDEKIND DOMAIN

We will start with a lemma before given proof of our main theorems These lemmas will be used
to proof our first main theorem.

Now, let R be a Dedckind domain with infinitely many prime ideals. And let m and n be a
maximal ideal of R[X] and &, respectively. Let R[X]x be a localization of R at m and S, be a
localization of of S at n. Then the following diagram will be used to proof our theorem.
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m™ o RIX)] — R[X)m
r(x) b} Flz) = I%Q

!
mp : S=R[X])/(f} — & =[RIX]/(f),

Lemma 3.1. Maezimal ideal of R[X)] which is contained f, is one-one correspondence with
mazximal ideal of S = R[X]|/{f}.
Proof. See Helmi[3] for the details. =

Now, we state our main theorems. Theorem 2.1. Let R be a Dedekind domain and
{f} C R[X] be e principal ideal which is not mazimal. Let m be a mazimal ideal of RIX).If f €m
maps to f € R[X|m, then there ezist a ring homomorphism R[X|w/(F) & Su = [R[X)/ {Na»
for all n , the mazimal ideal of R[X]/{f).
Proof. Let us define a map,

¢ : RX|a/{f) — [RIX)/{f).
() —  Hnrl

where s(z) ¢ m and s(z) + (f) € n. First, we will proved that % = 2% 4 (f) .Since

r(z}+ ()

@ = @+ N @+ ()

and

(55 + ) @)+ e =149

then (s{z) + ()~ = (—(—5 + {f)) therefore

r(@) + {f) -
ey = @)@+ )T
= @+ (5 )+(f))
r{z)
= S(x)+(f)

Suppose f = ag+a1z+a322+...+a,2"™ maps to f =1{. Let %-k(ﬂ , :—:%%-F(f) € R X]w/{f),
and %+(ﬂ=§§%+(f},then

7'1(33) (.ﬂ = Tz(w)_‘_(ﬂ

si(z) sz(x)
ri{z) r2(z)
a@ m@ < O
n@ i)
si{x)  safx)

= h(z).f

= h(z){
= k)
= (f)

_ raz)
+{f) = sz(x)ﬂf)

1"1(27)
s1{x)
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Hence, @ is well defined. For any a = %% +{.b= ?7% +{f) € R[X]w/ (F) then

(S + ) + (56 +))
- o((23+22)+ )
= o(niineal ()

r1(x).82(z) + ro(z).51(z) + ()
s1{x).52(x) + {f}

f (a + b)

| _ (71{x)-82(x) + r2(x).51 ()
: - ( s1(z).52(x) )+(f>
_ iz} | r2x)
- (GgrEg) o
— 8(a) +0(b)
and
s = o((25 ) (3G +7))
_ ri(x) ralz)
- (25 53) )
_ ry(x).rofx)
- o((Rormm) + )
_ re)ra(z) +{f)
s1(z).s2(z) + {F) :
_ r1{z).r2 (%)
i - 31(:0).32(:c)+<f)
{ _ (=) malz)
| - (25E5)
r1(x) ra2(x)
‘ - (25+v) (Z5+ )
B - — 0(a).0)
x and also

P +{f)
! | ( " <f>) 1+(f)
; Hence, # is a ring homomorphism. Suppose #(a) = :—:%%5% and 9(b) = %&%ﬁ% where #(a) =

' | 8(b). Since
1 : ri(z) + {f) _ nlz) ro(z) + {f) _ ra(z) + ()
1 ; sz} + {f)  si(z) 32(-"«‘) +{f)  sal2)

thus,

+{f} an

ri(z) + () _ re(@) + (f)
si(z) +{f)  salz) +{f)
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hence

r1(z) 1C))
m"'(f) 82($)+(f)
r(e) _ ras)
si1(z) s(x) €
0@ 5@ h{z).f
= h(z) (a0 + a1 T + a22” + ... + anz")

= h(z) (ao + a1z + azizz + ...+ anxn)
= h(m).{
= (fH

n@) g - )

51(z) +{f) = 52(2) +{F)

So, we have shown that & is injective. Finally, for any :—E;—’}H% € [R[X]/(f],, and since
maxsimal ideal n is one-one correspondence with m, hence, s(z) € m. Now,

r(e) + (f) _ r(a)
@+ @

then, for all :(:,)I f) € [R[X]/ {f}], there exist :—%— +{f) € R{X)n/{f), such that
0 (45 +(f)) = SYHR, which is showed that R[X]n/ (7) & 8, = [RIX)/ (/)] m

Theorem 3.3. Let R is Dedekind domain end (f) C R[X] a principal prime ideal which
is not mazimal. Let m is mazimal ideal of R[X] and n is mazimal ideal § = R[X]/{(f). Then
localization of § at n is principal if and only if there exist t in R[X )y suth that mR[X]n = (t, f} .
Proof. Since S, 2 R[X|wm/(f), then maximal ideal of S, , which is nS, isomorphic to
WR[X]m/ {F) . Suppose that mR{X]|w/ (f) is principal ideal. Let mR[X]m/{F) = {t +{F)),
then mR(X]m/ (F) = {(a+ (Nt +{F)); a€R[X]|m}. Let y € mR[X]m, hence, y + () €
mR[X]m/ (f), thus,

+ (N

v+ = ((e+(ME+{H)

= at+(f)
Hence,
y~at€(f)
and
v—at = bf
vy = at+bf

where a,b € R[X|m, and t, f € mR[X]m. Since y € mR[X]m hence mR[X)m = (¢, ) . Conversely,
suppose there exists ¢t € R[X|m such that mR[X]n = (¢, f). For any w € R[X|m, we have

w o= 4R
w = at+bf; a,b€ R[X]n
w—at = bf
w—at € (f)
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Hence
w+{f) = at+(f)
= (@+{M -+
Thus
w+{f)e{t+{)

It is clear that w + {f) € mA[X}m/{f). Hence, mR{X]w/ {f) is principal. m

CONCLUDING REMARKS

The main theorem in this work can be used to proof the main theorem in {2}, which is, if Ris a
Dedekind domain and f generates a prime ideal of R[X] which is not maximal, then the domain
R[X]/{f) is Dedekind if and only f is not contained in the square of any maximal ideal of R{X]
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