THE MAXIMAL IDEAL OF LOCALIZATION OF RING POLYNOMIAL OVER DEDEKIND DOMAIN

Monika Rianti Helmi

Algebra Research Group, Department of Mathematics, Andalas University, Padang, Indonesia.

E-mail: monika@fmipa.unand.ac.id

ABSTRACT

Let R be a Dedekind domain with infinitely many primes and $\langle f \rangle \subset R[X]$ a principal prime ideal which is not maximal. Let m be a maximal ideal of R[X] and n be a maximal ideal of $R[X]/\langle f \rangle$. Then localization of $R[X]/\langle f \rangle$ at n is principal if and only if there exist t in $R[X]_m$ such that $mR[X]_m = \langle t, \bar{f} \rangle$.

Keywords: Dedekind domain, localization, maximal ideal

INTRODUCTION

Integral domain R with field of fraction Q(R) is a Dedekind domain if R are Noetherian, integrally closed in Q(R) and every nonzero prime ideal is maximal ideal of R. Some examples of Dedekind domains are the ring of integers, the polynomial ring F[X] in one variable over any field F, and any other principal ideal domain, but not all Dedekind domains are principal ideal domains.

Localization is systematic method of adding multiplicative inverses to a ring. The localization of R by S can be denoted by $S^{-1}R$ or R_S . If R is integral domain with field of fractions Q(R), , and p is prime ideal of R, then the localization of R at p is the subring

$$R_{\mathfrak{p}} = \{\frac{r}{s} \in Q(R) : r \in R \text{ and } s \text{ } inR \setminus \mathfrak{p}\}$$

of Q(R). It is a local ring, with maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$. In this work we proof the following : Let R be a Dedekind domain with infinitely many primes and $\langle f \rangle \subset R[X]$ a principal prime ideal which is not maximal. Let \mathfrak{m} be a maximal ideal of R[X] and \mathfrak{n} be a maximal ideal of $R[X]/\langle f \rangle$. Then localization of $R[X]/\langle f \rangle$ at \mathfrak{n} is principal if and only if there exist t in $R[X]_{\mathfrak{m}}$ such that $\mathfrak{m}R[X]_{\mathfrak{m}} = \langle t, \overline{f} \rangle$.

DEDEKIND DOMAIN AND LOCALIZATION

A Dedekind domain is an integral domain satisfying the following three conditions :

- 1. R is Noetherian ring.
- 2. R is integrally closed.
- 3. Every nonzero prime ideal of R is maximal.

A Principal Ideal Domain (PID) satisfies all three conditions and therefore a Dedekind Domain. Hillman (1986) has proved that no maximal ideal of ring polynomial over a Dedekind domain is principal.

Let R be a ring and $S \subseteq R$ a multiplicative set; that is, suppose that :

- 1. $S \neq \emptyset \text{ dan } 1 \in S$
- 2. If $a, b \in S$ then $ab \in S$;.

Suppose that $f: R \to B$ is a ring homomorphism satisfying the two conditions :

- 1. f(x) is a unit in B for all $x \in S$.
- 2. If $g: R \to B'$ is a homomorphism of rings taking every element of S to a unit of B' then there exist a unique homomorphism $h: B \to B'$ such that g = hf.

Ring B satisfying the previous conditions is called the localization or the ring of fractions of R with respect to S.We write $B = S^{-1}R$ or R_s , where

$$S^{-1}R = \{\frac{r}{s} \in Q(R) ; r \in R \text{ dan } s \in S\}$$

Now define the following operations on B

$$\forall \frac{a}{b}, \frac{a'}{b'} \in S^{-1}R \implies \frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'}$$
$$\implies \frac{a}{b}, \frac{a'}{b'} = \frac{aa}{bb'}$$

Furthermore, define $f: R \longrightarrow S^{-1}R$ with $f(a) = \frac{a}{1}$, for all $a \in R$, and f is a ring homomorphism.

Theorem 2.1. (i) All the ideals of R_s are of the form IR_s , with I an ideal of R. (ii) Every prime ideal of R_s is of the form pR_s with p a prime ideal of R disjoint from S, and conversely, pR_s is prime in R_s for every such p.

Let \mathfrak{p} be a prime ideal of R, and set $S = R - \mathfrak{p}$. In this case we usually write $R_{\mathfrak{p}}$ for R_s . the localization $R_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$. Indeed, as we saw in theorem before, $\mathfrak{p}R_{\mathfrak{p}}$ is a prime ideal of $R_{\mathfrak{p}}$, and furthermore, if $J \subset R_{\mathfrak{p}}$ is any proper ideal then $I = J \cap R$ is an ideal of R disjoint from $R - \mathfrak{p}$, and so $I \subset \mathfrak{p}$, giving $J = IR_{\mathfrak{p}} \subset \mathfrak{p}R_{\mathfrak{p}}$. The prime ideals of $R_{\mathfrak{p}}$ correspond bijectively with the prime ideals of R contained in \mathfrak{p} .

Theorem 2.2. Let \mathfrak{p} is a prime prim of R, then : (i) There is a one-one correspondence between the set of prime ideals of R contained in \mathfrak{p} and the set of prime ideals of $R_{\mathfrak{p}}$. (ii) The ideal $\mathfrak{p}R_{\mathfrak{p}}$ in $R_{\mathfrak{p}}$ is the unique maximal ideal of $R_{\mathfrak{p}}$.

The result give us the following definition "A local ring is a commutative ring with identity which has a unique maximal ideal."

Example: 1. Every field is a local ring with $\{0\}$ is its maximal ideal. 2. if \mathfrak{p} is prime and $n \geq 1$, then $\mathbb{Z}_{\mathfrak{p}^n}$ is local ring with unique maximal ideal $\langle p \rangle$. Let R is Dedekind domain and $\langle f \rangle \subset R[X]$ a principal prime ideal which is not maximal. Let \mathfrak{m} is maximal ideal of R[X]and $R[X]_{\mathfrak{m}}$ is localization of R[X] at \mathfrak{m} . Then, no maximal ideal of $R[X]_{\mathfrak{m}}$ is principal and $\mathfrak{m}R[X]_{\mathfrak{m}}/(\mathfrak{m}R[X]_{\mathfrak{m}})^2$ is two dimensional vector space over the field $R[X]_{\mathfrak{m}}/\mathfrak{m}R[X]_{\mathfrak{m}}$.(Helmi, 2009).

THE MAXIMAL IDEAL OF LOCALIZATION OF RING POLYNOMIAL OVER DEDEKIND DOMAIN

We will start with a lemma before given proof of our main theorems. These lemmas will be used to proof our first main theorem.

Now, let R be a Dedekind domain with infinitely many prime ideals. And let \mathfrak{m} and \mathfrak{n} be a maximal ideal of R[X] and S, respectively. Let $R[X]_{\mathfrak{m}}$ be a localization of R at \mathfrak{m} and $S_{\mathfrak{n}}$ be a localization of of S at \mathfrak{n} . Then the following diagram will be used to proof our theorem.

Lemma 3.1. Maximal ideal of R[X] which is contained f, is one-one correspondence with maximal ideal of $S = R[X]/\langle f \rangle$.

Proof. See Helmi[3] for the details.

Now, we state our main theorems. Theorem 2.1. Let R be a Dedekind domain and $\langle f \rangle \subset R[X]$ be a principal ideal which is not maximal. Let \mathfrak{m} be a maximal ideal of R[X]. If $f \in \mathfrak{m}$ maps to $\overline{f} \in R[X]_{\mathfrak{m}}$, then there exist a ring homomorphism $R[X]_{\mathfrak{m}}/\langle \overline{f} \rangle \cong S_{\mathfrak{n}} = [R[X]/\langle f \rangle]_{\mathfrak{n}}$, for all \mathfrak{n} , the maximal ideal of $R[X]/\langle f \rangle$.

Proof. Let us define a map,

$$\begin{array}{rcl} \theta & : & R[X]_{\mathfrak{m}}/\left\langle \bar{f} \right\rangle & \longrightarrow & \left[R[X]/\left\langle f \right\rangle \right]_{\mathfrak{n}} \\ & & \frac{r(x)}{s(x)} + \left\langle \bar{f} \right\rangle & \longmapsto & \frac{r(x)+\left\langle f \right\rangle}{s(x)+\left\langle f \right\rangle} \end{array}$$

where $s(x) \notin \mathfrak{m}$ and $s(x) + \langle f \rangle \notin \mathfrak{n}$. First, we will proved that $\frac{r(x) + \langle f \rangle}{s(x) + \langle f \rangle} = \frac{r(x)}{s(x)} + \langle f \rangle$. Since

$$\frac{r(x) + \langle f \rangle}{s(x) + \langle f \rangle} = (r(x) + \langle f \rangle) (s(x) + \langle f \rangle)^{-1}$$

and

$$\left(\frac{1}{s(x)} + \langle f \rangle\right)(s(x) + \langle f \rangle) = 1 + \langle f \rangle$$

then $(s(x) + \langle f \rangle)^{-1} = \left(\frac{1}{s(x)} + \langle f \rangle\right)$, therefore

$$\frac{r(x) + \langle f \rangle}{s(x) + \langle f \rangle} = (r(x) + \langle f \rangle) (s(x) + \langle f \rangle)^{-1}$$
$$= (r(x) + \langle f \rangle) \left(\frac{1}{s(x)} + \langle f \rangle\right)$$
$$= \frac{r(x)}{s(x)} + \langle f \rangle$$

Suppose $f = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ maps to $\bar{f} = \frac{f}{1}$. Let $\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle$, $\frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle \in R[X]_{\mathfrak{m}} / \langle \bar{f} \rangle$, and $\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle = \frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle$, then

$$\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle = \frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle$$

$$\frac{r_1(x)}{s_1(x)} - \frac{r_2(x)}{s_2(x)} \in \langle \bar{f} \rangle$$

$$\frac{r_1(x)}{s_1(x)} - \frac{r_2(x)}{s_2(x)} = h(x).\bar{f}$$

$$= h(x).\bar{f}$$

$$= h(x).f$$

$$= \langle f \rangle$$

$$\frac{r_1(x)}{s_1(x)} + \langle f \rangle = \frac{r_2(x)}{s_2(x)} + \langle f \rangle$$

Hence, θ is well defined. For any $a = \frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle$, $b = \frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle \in R[X]_m / \langle \bar{f} \rangle$ then

$$\begin{aligned} \theta \left(a+b\right) &= \theta \left(\left(\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle \right) + \left(\frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle \right) \right) \\ &= \theta \left(\left(\frac{r_1(x)}{s_1(x)} + \frac{r_2(x)}{s_2(x)} \right) + \langle \bar{f} \rangle \right) \\ &= \theta \left(\frac{r_1(x).s_2(x) + r_2(x).s_1(x)}{s_1(x).s_2(x)} + \langle \bar{f} \rangle \right) \\ &= \frac{r_1(x).s_2(x) + r_2(x).s_1(x) + \langle f \rangle}{s_1(x).s_2(x) + \langle f \rangle} \\ &= \left(\frac{r_1(x).s_2(x) + r_2(x).s_1(x)}{s_1(x).s_2(x)} \right) + \langle f \rangle \\ &= \left(\frac{r_1(x)}{s_1(x)} + \frac{r_2(x)}{s_2(x)} \right) + \langle f \rangle \\ &= \theta(a) + \theta(b) \end{aligned}$$

and

$$\begin{aligned} \theta(ab) &= \theta\left(\left(\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle\right) \cdot \left(\frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle\right)\right) \\ &= \theta\left(\left(\frac{r_1(x)}{s_1(x)} \cdot \frac{r_2(x)}{s_2(x)}\right) + \langle \bar{f} \rangle\right) \\ &= \theta\left(\left(\frac{r_1(x) \cdot r_2(x)}{s_1(x) \cdot s_2(x)}\right) + \langle \bar{f} \rangle\right) \\ &= \frac{r_1(x) \cdot r_2(x) + \langle f \rangle}{s_1(x) \cdot s_2(x)} + \langle f \rangle \\ &= \frac{r_1(x) \cdot r_2(x)}{s_1(x) \cdot s_2(x)} + \langle f \rangle \\ &= \left(\frac{r_1(x)}{s_1(x)} \cdot \frac{r_2(x)}{s_2(x)}\right) + \langle f \rangle \\ &= \theta(a) \cdot \theta(b) \end{aligned}$$

and also

$$\theta\left(\frac{1}{1} + \left\langle \bar{f} \right\rangle\right) = \frac{1 + \left\langle f \right\rangle}{1 + \left\langle f \right\rangle}$$

Hence, θ is a ring homomorphism. Suppose $\theta(a) = \frac{r_1(x) + \langle f \rangle}{s_1(x) + \langle f \rangle}$ and $\theta(b) = \frac{r_2(x) + \langle f \rangle}{s_2(x) + \langle f \rangle}$ where $\theta(a) = \theta(b)$. Since

$$rac{r_1(x)+\langle f
angle}{s_1(x)+\langle f
angle}=rac{r_1(x)}{s_1(x)}+\langle f
angle ext{ and } rac{r_2(x)+\langle f
angle}{s_2(x)+\langle f
angle}=rac{r_2(x)}{s_2(x)}+\langle f
angle$$

$$\frac{r_1(x) + \langle f \rangle}{s_1(x) + \langle f \rangle} = \frac{r_2(x) + \langle f \rangle}{s_2(x) + \langle f \rangle}$$

thus,

hence

$$\frac{r_1(x)}{s_1(x)} + \langle f \rangle = \frac{r_2(x)}{s_2(x)} + \langle f \rangle$$

$$\frac{r_1(x)}{s_1(x)} - \frac{r_2(x)}{s_2(x)} \in \langle f \rangle$$

$$\frac{r_1(x)}{s_1(x)} - \frac{r_2(x)}{s_2(x)} = h(x).f$$

$$= h(x) (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)$$

$$= h(x) \frac{(a_0 + a_1x + a_2x^2 + \dots + a_nx^n)}{1}$$

$$= h(x).\frac{f}{1}$$

$$= \langle \bar{f} \rangle$$

$$\frac{r_1(x)}{s_1(x)} + \langle \bar{f} \rangle = \frac{r_2(x)}{s_2(x)} + \langle \bar{f} \rangle$$

So, we have shown that θ is injective. Finally, for any $\frac{r(x)+\langle f \rangle}{s(x)+\langle f \rangle} \in [R[X]/\langle f \rangle]_n$, and since maximal ideal n is one-one correspondence with m, hence, $s(x) \notin m$. Now,

$$\frac{r(x) + \langle f \rangle}{s(x) + \langle f \rangle} = \frac{r(x)}{s(x)} + \langle f \rangle$$

then, for all $\frac{r(x)+\langle f \rangle}{s(x)+\langle f \rangle} \in [R[X]/\langle f \rangle]_n$ there exist $\frac{r(x)}{s(x)} + \langle \bar{f} \rangle \in R[X]_m/\langle \bar{f} \rangle$, such that $\theta\left(\frac{r(x)}{s(x)} + \langle \bar{f} \rangle\right) = \frac{r(x)+\langle f \rangle}{s(x)+\langle f \rangle}$, which is showed that $R[X]_m/\langle \bar{f} \rangle \cong S_n = [R[X]/\langle f \rangle]_n$.

Theorem 3.3. Let R is Dedekind domain and $\langle f \rangle \subset R[X]$ a principal prime ideal which is not maximal. Let m is maximal ideal of R[X] and n is maximal ideal $S = R[X]/\langle f \rangle$. Then localization of S at n is principal if and only if there exist t in $R[X]_m$ such that $mR[X]_m = \langle t, \bar{f} \rangle$. Proof. Since $S_n \cong R[X]_m/\langle \bar{f} \rangle$, then maximal ideal of S_n , which is nS_n isomorphic to $mR[X]_m/\langle \bar{f} \rangle$. Suppose that $mR[X]_m/\langle \bar{f} \rangle$ is principal ideal. Let $mR[X]_m/\langle \bar{f} \rangle = \langle t + \langle \bar{f} \rangle \rangle$, then $mR[X]_m/\langle \bar{f} \rangle = \{(a + \langle \bar{f} \rangle) (t + \langle \bar{f} \rangle); a \in R[X]_m\}$. Let $y \in mR[X]_m$, hence, $y + \langle \bar{f} \rangle \in$ $mR[X]_m/\langle \bar{f} \rangle$, thus,

$$y + \langle \bar{f} \rangle = ((a + \langle \bar{f} \rangle) (t + \langle \bar{f} \rangle))$$
$$= at + \langle \bar{f} \rangle$$

Hence,

 $y - at \in \langle \bar{f} \rangle$

and

$$\begin{array}{rcl} y-at &=& b\bar{f}\\ y &=& at+b\bar{f} \end{array}$$

where $a, b \in R[X]_m$, and $t, \bar{f} \in \mathfrak{m}R[X]_m$. Since $y \in \mathfrak{m}R[X]_m$ hence $\mathfrak{m}R[X]_m = \langle t, \bar{f} \rangle$. Conversely, suppose there exists $t \in R[X]_m$ such that $\mathfrak{m}R[X]_m = \langle t, \bar{f} \rangle$. For any $w \in R[X]_m$, we have

$$\begin{array}{rcl} w & = & \left\langle t, \bar{f} \right\rangle \\ w & = & at + b\bar{f}; & a, b \in R[X]_{\mathfrak{m}} \\ w - at & = & b\bar{f} \\ w - at & \in & \left\langle \bar{f} \right\rangle \end{array}$$

Hence

$$w + \langle \bar{f} \rangle = at + \langle \bar{f} \rangle$$
$$= (a + \langle \bar{f} \rangle) (t + \langle \bar{f} \rangle)$$

Thus

$$w + \langle \bar{f} \rangle \in \langle t + \langle \bar{f} \rangle \rangle$$

It is clear that $w + \langle \bar{f} \rangle \in \mathfrak{m}R[X]_{\mathfrak{m}}/\langle \bar{f} \rangle$. Hence, $\mathfrak{m}R[X]_{\mathfrak{m}}/\langle \bar{f} \rangle$ is principal.

CONCLUDING REMARKS

The main theorem in this work can be used to proof the main theorem in [2], which is, if R is a Dedekind domain and f generates a prime ideal of R[X] which is not maximal, then the domain $R[X]/\langle f \rangle$ is Dedekind if and only f is not contained in the square of any maximal ideal of R[X]

Acknowledgement. In gratitute to Dr. Muchthadi Intan Detiena, in a long discuss and in a complicated this work.

REFERENCES

- 1. D.A. PASSMAN, A Course in Ring Theory, Wadsworth Inc, California, 1991.
- J.A. HILLMAN, Polynomial Determining Dedekind Domain, Bull. Austral. Math. Soc, 29, 167-175, 1984.
- 3. M.R. HELMI, Polynomial Over Dedekind Domain, Proceeding of IICMA, 2009.
- 4. M.R. HELMI, Ruang Vektor Berdimensi Dua Dari Lokalisasi Gelanggang Suku Banyak, Prosiding Semirata BKS-PTN Wilayah Barat Ke-23, 2010.
- 5. T.W. HUNGERFORD, Algebra, Springer-Verlag, New-York, 1974.
- 6. T.Y. LAM, Graduate Text in Mathematics : A First Course in Noncommutative Rings, Springer-Verlag, New-York, 1991.