2.1 Demam Berdarah Dengue

Demam berdarah Dengue (DBD) merupakan penyakit yang menjadi salah satu masalah kesehatan di Indonesia karena prevalensinya yang tinggi dan penyebarannya yang semakin meluas. DBD disebabkan oleh virus dengue yang termasuk kelompok *Arthropod Borne Virus* (*Arboviruses*) dan sekarang dikenal sebagai genus Flavivirus, family Flaviviridae yang mempunyai 4 serotipe yaitu DEN-1, DEN-2, DEN-3 dan DEN-4. DEN-3 merupakan serotype dominan dan sangat berhubungan dengan kasus berat. Virus tersebut ditularkan oleh nyamuk *Ae.aegypti* (*Ae.aegypti*) sebagai vektor aktual dan *Aedes albopictus* sebagai vektor potensial. *Ae. aegypti* mendapat virus *Dengue* setelah menghisap darah manusia yang sedang mengalami viremia. Virus terus berkembang di dalam tubuh nyamuk dan ditemukan di kelenjer liurnya dalam waktu 8-10 hari (*extrinsic incubation period*) sebelum dapat ditularkan kembali kepada manusia pada gigitan berikutnya. Virus dalam tubuh nyamuk betina juga dapat ditularkan kembali kepada telurnya (*transovarian transmission*). Pada manusia virus memerlukan waktu 4-6 hari (*intrinsic incubation period*) sebelum menimbulkan gejala. Penularan dari manusia ke nyamuk hanya dapat terjadi bila nyamuk menggigit manusia yang sedang mengalami viremia yaitu 2 hari sebelum demam sampai 5 hari setelah demam timbul.¹¹

Gejala DBD adalah demam tinggi menderadak 2-7 hari, tanda-tanda perdarahan, hepatomegali dan syok yang disebut kriteria klinik. Kriteria laboratorium DBD adalah trombositopeni dan hemokonsentrasi yaitu meningkatnya nilai hematokrit sebanyak 20% atau lebih. Selain kriteria klinis dan laboratorium pemeriksaan penunjang lain yang dapat digunakan untuk diagnosis adalah diagnosis serologis yang terdiri atas: uji hemaglutinasi inhibisi, pemeriksaan Ig M dan Ig G dengan ELISA, serta diagnosis dengan *polymerase chain reaction* (PCR).¹¹

Faktor-faktor yang mempengaruhi peningkatan dan penyebaran DBD sangat kompleks yaitu pertumbuhan penduduk yang tinggi, urbanisasi yang tidak terencana dan tidak terkendali, tidak adanya ckntrl vektor nyamuk yang efektif di daerah endemis dan peningkatan sarana transportasi.¹
Untuk mengurangi kecenderungan penyebarluasan wilayah terjangkit DBD dan peningkatan jumlah penderita serta mengusahakan agar angka kematian tidak melebihi 3% maka pemerintah terus menyempurnakan program pemberantasan DBD. Sampai saat ini belum ditemukan obat khusus untuk pemberantasan DBD, demikian pula vaksin untuk pencegahan penyakit ini. Strategi pemberantasan DBD lebih ditekankan pada upaya preventif, salah satunya pengendalian lara Ae.aegypti menggunakan larvisida temefos 1%.1,12

Secara epidemiologi daerah DBD dapat dibagi menjadi daerah endemis, sporadis dan daerah bebas DBD. Dikatakan daerah endemis jika terdapat kasus dalam 3 tahun berturut-turut, dikatakan daerah sporadis jika kasus terjadi tidak dalam 3 tahun berturut-turut, dan dikatakan daerah bebas DBD jika tidak ditemukan kasus DBD di daerah tersebut.

2.2 Nyamuk Ae. aegypti

2.2.1 Klasifikasi

Menurut Richard dan Davis, kedudukan nyamuk Ae. aegypti dalam klasifikasi termasuk dalam filum Arthropoda, kelas Insecta, ordo Diptera, famili Culicidae, genus Aedes, dan spesies Ae. aegypti.13

2.2.2 Morfologi

Nyamuk Ae. aegypti dikenal dengan sebutan Black White Mosquito atau Tiger Mosquito karena tubuhnya memiliki ciri yang khas, yaitu adanya garis-garis dan bercak-bercak putih keperakan di atas dasar warna hitam. Ciri khas utama nyamuk ini adalah dua buah garis lengkung yang berwarna putih sejajar di garis median dari punggungnya yang berwarna dasar hitam (lyre shaped marking).14

Nyamuk Ae. aegypti dewasa berukuran kecil dengan probosis bersisik hitam, palpi pendek dengan ujung hitam bersisik putih perak. Oksiput bersisik lebar berwarna putih terletak memanjang dan sayap berukuran 2,5-3,0 mm dan bersisik hitam.13

Tubuh nyamuk Ae. aegypti tersusun dari tiga bagian, yaitu kepala, dada dan perut. Pada bagian kepala terdapat sepasang mata majemuk dan antena berbulu. Mulut nyamuk betina merupakan tipe pensusuksengisap (piercing-sucking) dan termasuk lebih
menyukai manusia (*anthropophagus*), sedangkan nyamuk jantan bagian mulut lebih lemah sehingga tidak mampu menembus kulit manusia, karena itu tergolong lebih menyukai cairan tumbuhan (*phytophagus*). Nyamuk betina mempunyai antena tipe *pilose* sedangkan nyamuk jantan tipe *plumose*.\(^{13,15}\)

Perut terdiri dari 8 ruas dan pada ruas-ruas tersebut terdapat bintik-bintik putih. Waktu istirahat posisi nyamuk *Ae. aegypti* ini tubuhnya sejajar dengan bidang permukaan yang dihinggapinya. Morfologi secara keseluruhan dari nyamuk *Ae. aegypti* tersebut dapat dilihat pada Gambar 2.1 berikut:

![Gambar 2.1 Nyamuk *Ae. aegypti* dewasa]({} "{}"

2.2.3 Siklus Hidup

Dalam siklus hidupnya, nyamuk *Ae. aegypti* mengalami 4 stadium, yaitu telur, larva, pupa dan dewasa, sehingga termasuk metamorfosis sempurna (*holometabola*).\(^{11,12}\)
Siklus hidup nyamuk *Ae. aegypti* secara lengkap dapat dilihat pada Gambar 2.2 berikut:

Gambar 2.2 Siklus hidup nyamuk *Ae. Aegypti*\(^6\)

Telur *Ae. aegypti* berbentuk elips atau oval memanjang, warna hitam, ukuran 0,5-0,8 mm, permukaan poligonal, tidak memiliki alat pelampung, dan diletakkan satu persatu pada benda-benda yang terapung atau pada dinding bagian dalam tempat penampungan air (TPA) yang berbatasan langsung dengan permukaan air. Dilaporkan bahwa dari telur yang dilepas, sebanyak 85% melekat pada dinding TPA, sedangkan 15% lainnya mengapung ke permukaan air. Telur nyamuk *Ae. aegypti* di dalam air dengan suhu 20-40\(^\circ\)C akan menetas menjadi larva dalam waktu 1-2 hari.\(^7\)

Larva Ae. aegypti memanjang tanpa kaki dengan bulu-bulu sederhana yang tersusun bilateral simetris. Larva ini dalam pertumbuhan dan perkembangannya mengalami 4 kali pergantian kulit (*ecdysis*), dan larva yang terbentuk berturut-turut disebut larva instar I, II, III dan IV.

Larva instar I, tubuhnya sangat kecil, warna transparan, panjang 1-2 mm, duri-duri (*spinae*) pada dada belum begitu jelas, dan corong pernapasan (*siphon*) belum menghitam. Larva instar II bertambah besar, ukuran 2,5-3,9 mm, duri dada belum jelas, dan siphon sudah berwarna hitam. Larva instar II ini, setelah 2-3 hari akan menjadi instar III, yang memiliki ukuran 5 mm. Baru setelah 2-3 hari larva instar III ini berubah menjadi
larva instar IV. Larva instar IV telah lengkap struktur anatominya dan jelas tubuh dapat dibagi menjadi bagian kepala, dada, dan perut, dengan ukuran 7-8 mm.

Pada bagian kepala larva, terdapat sepasang mata majemuk, sepasang antenna tanpa duri-duri dan mulut tipe pengunyah (chewing). Bagian dada tampak paling besar dan terdapat bulu-bulu yang simetris. Perut tersusun atas 8 ruas. Ruas perut ke-8 terdapat alat untuk bernapas yang disebut corong pernapasan (siphon). Siphon tanpa duri-duri, berwarna hitam, dan ada berkas bulu-bulu (tuft). Ruas ke-8 juga dilengkapi dengan seberkas bulu sikat (brush) di bagian ventral dan gigi-gigi sisir (comb) yang berjumlah 15-19 gigi yang tersusun dalam 1 baris. Gigi-gigi sisir dengan lekukan yang jelas membentuk gerigi. Larva ini berbentuk langsing dan bergerak sangat lincah, bersifat fototaksis negatif, dan waktu istirahat membentuk sudut hampit tegak lurus dengan bidang permukaan air.³ Gambar larva Ae. aegypti dapat dilihat pada Gambar 2.3 berikut:

![Gambar 2.3 Larva nyamuk Ae. aegypti yang menempel tegak lurus pada permukaan air](image)

Kecepatan pertumbuhan dan perkembangan larva dipengaruhi oleh beberapa faktor, yaitu temperatur, tempat perindukan, keadaan air, dan kandungan zat makanan yang ada di tempat perindukan. Pada kondisi optimum, larva berkembang menjadi pupa dalam waktu 4-9 hari.¹⁷

Pupa Ae. aegypti berbentuk bengkok, dengan bagian kepala-dada (cephalothorax) lebih besar bila dibandingkan dengan bagian perutnya, sehingga tampak seperti tanda baca "koma". Pada bagian dorsal dada terdapat alat bernapas seperti terompet. Pada ruas perut ke-8 terdapat sepasang alat pengayuh yang berguna untuk berenang. Pupa adalah bentuk tidak makan, gerakannya lebih lincah bila dibandingkan dengan larva. Pupa
menjadi nyamuk dewasa dalam waktu 2-3 hari. Waktu istirahat posisi pupa sejajar dengan bidang permukaan air, seperti terlihat pada Gambar 2.4 berikut:

![Gambar 2.4 Pupa nyamuk Ae. aegypti pada waktu istirahat](image)

Pertumbuhan dan perkembangan telur, larva, pupa, sampai dewasa memerlukan waktu kurang lebih 7-14 hari. Nyamuk dewasa sanggup bertelur sebanyak 100 butir setelah menghisap darah manusia 3 hari sebelumnya. Dua puluh empat jam kemudian nyamuk itu menghisap darah lagi, dan selanjutnya kembali bertelur. Walaupun nyamuk betina berumur kira-kira 10 hari, waktu itu cukup bagi nyamuk untuk makan dan menyebarkan virus ke manusia lain. Sementara bagi virus di dalam tubuh nyamuk, waktu tersebut cukup untuk berkembang biak.

2.2.4 Bionomik

Nyamuk *Ae. aegypti* betina bersifat antropofilik, yaitu senang menggigit manusia. Nyamuk betina biasanya menggigit di dalam rumah, kadang-kadang di luar rumah, di tempat yang agak gelap. Pada malam hari, nyamuk beristirahat di dalam rumah pada benda-benda yang digantung, seperti pakaian, kelambu, pada dinding dan di bawah rumah dekat dengan tempat perindukannya, biasanya di tempat yang lebih gelap.

Nyamuk *Ae. aegypti* hampir selalu ditemukan di daerah perkotaan, sedangkan di daerah pedesaan, nyamuk *Ae. aegypti* tidak ada atau sangat jarang ditemukan. Nyamuk *Ae. aegypti* hidup domestik, lebih menyukai tinggal di dalam rumah daripada di luar rumah. Nyamuk betina menggigit dan menghisap darah lebih banyak di siang hari terutama pagi atau sore hari antara pukul 08.00 sampai dengan 12.00 dan 15.00 sampai
dengan 17.00. Nyamuk Ae. aegypti betina menghisap darah beberapa kali pada siang hari untuk mencukupi jumlah darah untuk pertumbuhan dan perkembangan telurnya.18

Nyamuk ini mempunyai kebiasaan menggigit berulang (\textit{multiple biters}), yaitu menggigit beberapa orang secara bergantian dalam waktu singkat. Hal ini disebabkan karena nyamuk Ae. aegypti sangat sensitif dan mudah terganggu. Keadaan ini sangat membantu pemindahan virus dengue ke beberapa orang sekaligus sehingga dilaporkan adanya beberapa penderita DBD di satu rumah.18

Waktu mencari makanan, selain ter dorong oleh rasa lapar, nyamuk Ae. aegypti juga dipengaruhi oleh beberapa faktor, yaitu bau yang dipancarkan oleh inang, temperatur, kelembapan, kadar karbon dioksida, dan warna. Untuk jarak yang lebih jauh, faktor bau memegang peranan penting bila di dalam rumah pada benda-benda yang bergantung, berwarna gelap dan di tempat-tempat lain yang terlindung.18

\textit{Jangkauan terbang (flight range) rata-rata nyamuk Ae. aegypti} adalah sekitar 100 meter, tetapi pada keadaan tertentu nyamuk ini dapat terbang sampai beberapa kilometer dalam usahanya untuk mencari tempat perindukan untuk meletakkan telurnya.18

\textbf{Tempat perindukan nyamuk Aedes tidak selalu ada} terus menerus sepanjang tahun. Tempat perindukan yang ada di luar rumah terutama pada musim kemarau akan banyak menghilang, karena airnya mengerging. Bila musim hujan tiba, tempat perindukan
di luar rumah akan muncul kembali. Karena itu populasi nyamuk *Ae. aegypti* pada musim kemarau menurun jumlahnya sedangkan pada musim hujan meningkat. Hal ini disebabkan selain jumlah tempat perindukan yang berkurang juga karena pengaruh suhu udara yang tinggi dan kelembapan udara yang relatif rendah, akibatnya umur nyamuk lebih pendek dan cepat mati. Sebaliknya pada waktu musim hujan jumlah populasi nyamuk *Aedes* akan meningkat, karena tempat perindukan di luar rumah terbentuk lagi dan suhu yang sejuk serta kelembapan udara yang relatif tinggi menguntungkan bagi kehidupan nyamuk.18

Berdasarkan hubungan antara iklim dan jumlah populasi nyamuk *Ae. aegypti*, maka dapat diketahui pola musim penularan penyakit DBD. Secara umum dapat dikatakan bahwa pola musim penularan penyakit DBD sejalan dengan pola musim penghujan.

Tempat perindukan yang ada di dalam rumah boleh dikatakan selalu ada sepanjang tahun. Tempat air yang tertutup longgar lebih disukai oleh nyamuk betina sebagai tempat bertelur, dibandingkan dengan tempat air yang terbuka. Karena tutupnya jarang dipasang dengan baik dan sering dibuka mengakibatkan ruang di dalamnya relatif lebih gelap dibandingkan dengan tempat air yang terbuka.

2.3 Pengendalian Vektor DBD

Pengendalian vektor DBD merupakan satu-satunya cara yang harus dilakukan dalam upaya pencegahan dan penanggulangan penyakit DBD dengan tujuan meutuskan mata rantai penularan DBD, karena sampai sekarang belum ditemukan obat anti virus dengue dan vaksin DBD.20

Gerakan pemnberantasan sarang nyamuk (PSN) merupakan salah satu cara pengendalian vektor DBD. Kegiatan tersebut meliputi menguras bak mandi dan TPA lain secara teratur sekurang-kurangnya seminggu sekali, menutup rapat TPA, membersihkan halaman rumah dari kaleng, tempurung, botol bekas atau barang lain yang berpotensi menampung air, mengganti air pada vas bunga dan tempat minum burung, menutup lobang pohon dan bamboo dengan tanah dan lain lain.1

Pengendalian vektor DBD yang telah dilakukan selama ini dan memberikan hasil yang menjanjikan adalah pengendalian dengan menggunakan temefos berbentuk granula

Beberapa percobaan di laboratorium sebagai upaya pengendalian biologik larva *Ae.aegypti* telah banyak dilakukan. Di Bagian Parasitologi Fakultas Kedokteran Universitas Indonesia telah dikaji efektivitas mikroba yang disebut *Bacillus thuringiensis var israelensis* yang tidak berspora (*a-sporogenous*) terhadap larva *Ae.aegypti* dengan menggunakan dosis ½ tablet/50 liter yang memberikan hasil bahwa *Bacillus thuringiensis* tersebut masih efektif jika digunakan sebagai larvasida sampai 3 bulan. Di samping itu juga telah dilakukan penelitian untuk mempelajari efektivitas metopren yaitu bahan pengatur pertumbuhan serangga (*Insect Growth Regulator/IGR*) terhadap larva *Ae.aegypti* yang menyatakan bahwa metopren dengan dosis 0,08-0,32 ppm masih efektif untuk pengendalian larva *Ae.aegypti* dalam waktu 1 bulan. Penelitian serupa juga telah dilakukan di Thailand, Myanmar dan India yang memberikan hasil yang sama.

2.4 Temefos

Temefos merupakan larvisida yaitu insektisida yang dapat membunuh stadium larva. Bahan aktif yang terkandung di dalamnya yaitu golongan organofosfat, sama halnya dengan malathion yang biasanya digunakan dalam *fogging* untuk membunuh nyamuk *Ae.aegypti* stadium dewasa.

Larvisida tersebut digunakan untuk pengendalian larva *Ae.aegypti* pada TPA dan digunakan di daerah yang rawan DBD termasuk di dalamnya daerah endemis dan daerah sporadis terutama pada saat musim hujan karena TPA banyak terisi air hujan sehingga berpotensi menjadi tempat perindukan larva *Ae.aegypti*. Temefos tidak toksik terhadap mamalia termasuk manusia, tetapi mempunyai toksisitas yang tinggi terhadap larva nyamuk. Larvisida ini dikenal dengan nama dagang Abate 1 G yang mengandung temefos 1% berbentuk granula, dengan cara kerja *slow release* dan mempunyai daya residu lebih kurang 1 bulan bila digunakan dalam TPA dengan dosis 0,1 g/l. Temefos
masuk sebagai racun kontak yang menyerang sistem syaraf dengan menghambat kolinesterase dengan rumus pada gambar 2.6

Gambar 2.6 Susunan kimia temefos

2.5 Kerentanan Aedes aegypti terhadap temefos

Penggunaan insektisida termasuk temefos secara terus menerus dalam jangka waktu yang lama dapat menyebabkan penurunan kerentanan Ae.aegypti terhadap temefos menurun yang pada akhirnya akan menjadi resisten. Resistensi terhadap temefos telah dilaporkan di banyak negara Brazil, Bolivia, Argentina dan lain lain. Sedangkan di Indonesia telah dilaporkan resistensi pada Ae.aegypti di Yogyakarta dan Sumbawa.⁸

Mekanisme resistensi terhadap temefos secara umum sama dengan mekanisme resistensi pada bahan aktif organofosfat lainnya yaitu: melalui penebalan kutikula, peningkatan enzim penetralisir organofosfat antara lain esterase, oksidase dan lain lain serta perubahan sisi targetnya yaitu asetilkolinesterase.²¹

Cara untuk mendeteksi derajat kerentanan tersebut dapat dilakukan dengan berbagai cara antara lain dengan teknik bioassay dimana akan dilihat LC₅₀ dan LC₉₉ dalam paparan 24 jam larva Ae.aegypti terhadap temefos 1% dan dibandingkan dengan cut off point yang ditetapkan WHO. Selain itu resistensi dapat juga dilihat dari peningkatan enzim detoksikasi dengan metode microplate assay.⁹,²¹
2.6 Kerangka Konsep

Pekanbaru daerah rawan DBD

Daerah endemis
Daerah sporadis
Daerah bebas

Sering menggunakan abate dalam waktu lama
Jarang menggunakan abate

Uji kerentanan larva *Ae.aegypti* terhadap temefos dengan *bioassay*