BAB III

TEOREMA TITIK TETAP PADA RUANG BANACH

KONVEK SERAGAM

Sebagai mana tujuan penelitian ini , yaitu untuk membuktikan adanya solusi tunggal dalam ruang Banach Konvek Seragam yang dikemukakan oleh P. Veeramani [1992]. Untuk itu dijelaskan terlebih dulu teorema titik tetap yang dikemukakan oleh S.Banach [1922] demikian juga sifat T-renguler.

3.1. Teorema Titik Tetap Pada Ruang Banach.

Definisi 3.1.1.Misalkan (X,d) ruang metrik. Pemetaan $T: X \to X$ dikatakan kontraksi pada X jika terdapat $0 \le \infty \le 1$ sehingga untuk setiap $x, y \in X$ berlaku:

$$d(Tx, Ty) \le \alpha d(x,y)$$

Secara geometris diartikan bahwa bayangan x dan y saling berdekatan dengan masingmasing titik x dan y, lebih tepat lagi perbandingan $d(Tx,Ty)/d(x,y) \le \alpha$ dengan $\alpha \le 1$ Definisi diatas terkenal dengan "Prinsip Kontraksi Banch". Penulisan T(x) sering ditulis dengan Tx, dan untuk selanjutnya,

$$T^{2}x = TTx$$

$$T^{3}(x) = T(T^{2}x) = T(T(Tx))$$

$$T^{n}x = T(T^{n-1}x).$$

Lemma 3.1.2. Setiap kontraksi T pada ruang metrik adalah pemetaan kontinu.

Bukti:

Misalkan T adalah pemetaan kontraksi maka terdapat $\alpha < 1$ sehingga untuk setiap $x, y \in X$ berlaku

$$d(Tx,Ty) \le \alpha d(x,y)$$

Syarat pemetaan T kontinu pada $x \in X$ bila untuk setiap $\varepsilon \ge 0$ terdapat $\delta \ge 0$ sehingga

$$d(x,y) \le \delta$$
 maka $d(Tx,Ty) \le \varepsilon$ untuk $x,y \in X$

Pilih $\delta = \frac{\varepsilon}{\alpha}$ maka untuk setiap $\varepsilon \ge 0$ terdapat $\delta \ge 0$ sehingga $d(x,y) \le \delta$ maka

 $d(Tx, Ty) \le \varepsilon$ untuk setiap $x, y \in X$

Sehingga terbukti bahwa pemetaan kontraksi T adalah pemetaan yang kontinu.

Teorema 3.1.3. (Teorema kontraksi Banach)

Misalkan X adalah ruang metrik lengkap. T $X \rightarrow X$ adalah pemetaan kontraksi pada X, maka terdapat satu dan hanya satu $x \in X$ sehingga Tx = x.

Dalam hal ini x disebut titik tetap.

Bukti:

Misalkan x dan y dua titik sebarang di X dan $d(Tx,Ty) \le \alpha d(x,y)$ untuk $0 \le \alpha \le 1$ dan untuk $d(T^2x, T^2y) = d(T(Tx), T(Ty))$

$$= \alpha d(Tx, Ty)$$

$$= \alpha^2 d(x,y)$$

$$d(T^{3}x, T^{3}y) = d(T(T^{2}x, T^{2}y))$$

$$= \alpha d(T^{2}x, T^{2}y)$$

$$= \alpha^{3}d(x,y)$$

$$d(T^{n}x, T^{n}y) = d(T(T^{n-1}x, T^{n-1}y))$$

$$= \alpha d(T^{n-1}x, T^{n-1}y)$$

$$= \alpha^{n}d(x,y)$$

maka diperoleh

$$d(T^nx, T^ny) \leq \alpha^n d(x,y)$$
 dengan $x, y \in X$

Selanjutnya, pilih $x_o \in X$ sebarang . Definisikan

$$x_{I} = Tx_{O}$$
,
 $x_{2} = Tx_{I} = T^{2}x_{O}$.
 $x_{n} = Tx_{n-1} = T(T^{n-1}x_{0}) = T^{n}x_{0}$

sehingga untuk setiap $n \ge 0$ berlaku $x_n = T^n x_0$.

Akan ditunjukkan

- (x_n) adalah barisan cauchy (i)
- terdapat satu dan hanya satu $x \in X$ sehingga Tx = x(ii)

∴ ad (i) Untuk menunjukkan (x_n) adalah barisan cauchy, misalkan m > n dan m =n + p. Untuk $p \in N$ sebarang, maka

$$d(x_{n}, x_{m}) = d(x_{n}, x_{n+p})$$

$$\leq d(x_{n}, x_{n+p}) + d(x_{n+p}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$= d(T^{n}x_{0}, T^{n}x_{1}) + d(T^{n+1}x_{0}, T^{n+1}x_{1}) + \dots + d(T^{n+p-1}x_{0}, T^{n+p-1}x_{1})$$

$$\leq \alpha^{n} d(x_{0}, x_{1}) + \alpha^{n+1} d(x_{0}, x_{1}) + \alpha^{n+p-1} d(x_{0}, x_{1})$$

$$= \alpha^{n} d(x_{0}, x_{1}) (1 + \alpha + \alpha^{2} + \dots + \alpha^{p-1})$$

karena ($1 + \alpha + \alpha^2 + \dots$) = $\sum_{k=0}^{\infty} \alpha^k$ untuk $0 < \alpha < 1$ akan konvergen

ke $\frac{1}{1-\alpha}$, sehingga

$$d(x_n, x_m) \le \alpha^n d(x_0, x_1) \sum_{k=0}^{\infty} \alpha^k$$

sehingga
$$d(x_n, x_m) \le \frac{\alpha^n d(x_0, x_1)}{1 - \alpha}$$

karena $\lim_{n\to\infty} \alpha^n = 0$ untuk $0 \le \alpha \le 1$, maka akan terdapat $\epsilon \ge 0$ sehingga $d(x_n, x_m) \le \varepsilon$ dengan kata lain, barisan (x_n) adalah barisan cauchy dalam ruang metrik lengkap X.

∴ ad (ii) Selanjutnya akan dibuktikan bahwa terdapat solusi tunggal dari T.

> Karena X lengkap, maka untuk setiap barisan cauchy di X, terdapat $x \in X$ sehingga $\lim_{n \to \infty} T$. Karena T kontinu maka akan berlaku juga

 $\lim_{n\to\infty} |\mathrm{T} x_n| < \mathrm{T} x$. Tetapi karena $\mathrm{T} x_n > x_{n+1}$ berarti ($\mathrm{T} x_n$) adalah subbarisan

dari (x_n) yang juga konvergen ke x. Jadi diperoleh $\exists x \exists x$. Ini berarti x adalah titik tetap dari \exists .

Untuk menunjukkan ttitik tetapnya tunggal, misalkan x dan y dua titik tetap pada T dengan $x \neq y$. Maka Tx = x dan Ty = y dan

$$0 \le d(x, y) = d(Tx, Ty) \le \alpha d(x, y)$$

Karena $x\neq y$ maka $d(x,y)\neq 0$, akibatnya $\alpha \ge 1$. Ini bertentangan dengan $\alpha \le 1$, jadi haruslah x=y

Teorema 3.1.4. Misalkan (X,d) adalah ruang metrik lengkap dan $TX \to X$ adalah suatu pemetaan. Bila T^m adalah pemetaan kontraksi pada X untuk suatu m, maka T mempunyai titik tetap.

Bukti:

Misalkan B = T^m adalah suatu kontraksi pada X. Berdasarkan teorema 3.1.3, B mempunyai titik tetap tunggal sebutlah \hat{x} . Jadi B $\hat{x} = \hat{x}$. Karena itu $B^n \hat{x} = \hat{x}$ Selanjutnya klaim $\lim_{n\to\infty} B^n x = \hat{x}$ untuk setiap $x\in X$

Untuk membuktikannya, didefinisikan barisan (x_n) sebagai berikut:

$$x_0 = x$$

$$x_1 = Bx$$

$$x_2 = Bx_{n-1} = B^n x_0$$

Menurut proses pembuktian teorema 3.1.3, maka terdapat $y \in X$ sehingga $\lim_{n \to \infty} (x_n) \cdot y$ atau $\lim_{n\to\infty} B^n x_0 = \lim_{n\to\infty} B^n x = y$. Elemen y ini tak lain adalah titik tetap dari B. Karena titik tetapnya tunggal maka haruslah $y = \hat{x}$ sehingga untuk setiap $\hat{x} \in X$ $\lim_{n\to\infty} B^n x = \hat{x}$

Untuk menunjukkan T mempunyai fitik tetap, misalkan T x e N $\lim_{n\to\infty} B^n \mathrm{T} \, \hat{x} = \hat{x} .$

sehingga
$$\hat{x} = \lim_{n \to \infty} T^{nn} T \hat{x} = \hat{x}$$

$$= \lim_{n \to \infty} T^{mn+1} \hat{x} = \lim_{n \to \infty} T(T^{mn}) \hat{x}$$

$$= \lim_{n \to \infty} TB^n \hat{x} = \lim_{n \to \infty} T \hat{x} = \hat{x}$$

Jadi \hat{x} merupakan titik tetap dari T. karena setiap titik tetap dari T juga merupakan titik tetap dari B maka T tidak mempunyai lebih dari satu titik.

3.2. Teorema titik tetap pada ruang Banach konyek seragam.

Sebelum membuktikan keberadaan dari titik tetap dalam ruang Banach konvek akan diberikan dahulu definisi dan sifat dari himpunan T-reguler yang diperlukan untuk membantu membuktikan teorema selanjutnya .

Definisi 3.2.1. Misalkan X ruang vektor bernorm AC X dikatakan himpunan T-reguler jika dan hanya jikamemenuhi :

(i) $T: A \rightarrow A$

(ii) $(x+Tx)/2 \in A$

Sifat-sifat dari himpunan T-Reguler:

- a) Misalkan X ruang vektor dan $\{A_{\alpha}\}_{\alpha\in I}\subset X$ maka $\bigcap A_{\alpha}$ dan $\bigcup A_{\alpha}$ adalah himpunan T-Reguler.
- b) Misalkan X merupakan ruang vektor dan T : X →X adalah transformasi linier. A dan B subset dari X Maka T(A), T(A+B) merupakan himpunan T-reguler.
- c) Misalkan X merupakan ruang vektor topologi dan T: X→X adalah pemetaan kontinu. A ⊂ X dan A adalah himpunan T-reguler. Maka A (closure A) juga merupakan himpunan T-reguler.
- d) Misalkan X ruang Banach konvek seragam. $F \subset X$, F terbatas maka ada $Tx \cap x$ untuk setiap $x \in F$ atau terdapat $x_0 \in F$ sehingga sup $\{\|x x_0\| : x \in F\} \subseteq (x_0, F)$

Bukti:

Pada bagian ini sifat-sifat yang akan dibuktikan hanyalah sifat-sifat yang akan digunakan pada pembahasan selanjutnya yaitu:

- (a) Misalkan X ruang vektor dan $\{A_{\alpha}\}_{\alpha\in I}$ adalah koleksi himpunan T-reguler subset dari X schingga $T:A_{\alpha}\to A_{\alpha}$ dan $(x+Tx)/2\in A_{\alpha}$ untuk setiap $x\in A_{\alpha}$ dan $\alpha\in I$. Akan ditunjukkan
 - 1. (i) $T: \bigcap A_{\alpha} \to \bigcap A_{\alpha}$
 - (ii). $(y+Ty)/2 \in \bigcap A_{\alpha}$ untuk setiap $y \in \bigcap A_{\alpha}$

- 2. (i). $T: \bigcup A_{\alpha} \to \bigcup A_{\alpha}$
 - (ii) $(x + Tx)/2 \in \bigcup A_{\alpha}$ untuk setiap $x \in \bigcup A_{\alpha}$

ad 1.

(i) Misalkan sebarang $y \in \bigcap A_{\alpha}$ artinya $y \in A_{\alpha}$ untuk setiap $\alpha \in I$. Karena A_{α} adalah himpunan T-reguler maka $Ty \in A_{\alpha}$ untuk setiap $\alpha \in I$ akibatnya $Ty \in \bigcap A_{\alpha}$.

Sehingga T: $\bigcap A_{\alpha} \rightarrow \bigcap A_{\alpha}$

(ii) Misalkan $y \in \bigcap A_{\alpha}$ artinya $y \in A_{\alpha}$ untuk setiap $\alpha \in I$. Karcna A_{α} adalah himpunan T-reguler maka $Ty \in A_{\alpha}$ untuk setiap $\alpha \in I$ dan $(y+Ty)/2 \in A_{\alpha}$ akibatnya $Ty \in \bigcap A_{\alpha}$ untuk setiap $\alpha \in I$. Sehingga akan berlaku $(y+Ty)/2 \in \bigcap A_{\alpha}$

ad 2.

\$

- (i) Ambil sebarang $x \in \bigcup A_{\alpha}$ artinya $x \in A_{\alpha}$ paling kurang untuk satu α .

 Artinya $\exists x \in A_{\alpha} \quad \alpha \in I$ akibatnya $\exists x \in \bigcup A_{\alpha}$ sehingga $\exists x \in \bigcup A_{\alpha} \rightarrow \bigcup A_{\alpha}$
- (ii) Dari (i), karena $x \in \bigcup A_{\alpha}$ artinya $x \in A_{\alpha}$ paling kurang untuk satu α .

 Karena A_{α} himpunan T-reguler, maka $Tx \in A_{\alpha}$ paling kurang satu $\alpha \in I$ dan $(x+Tx)/2 \in A_{\alpha}$ akibatnya $Tx \in \bigcup A_{\alpha}$, sehingga berlaku $(x+Tx)/2 \in \bigcup A_{\alpha}$.

Sehingga terbukti $\cap A_{\alpha}$ dan $\cup A_{\alpha}$ adalah T-renguler.

d). Misalkan untuk setiap $x \in F$, $x \neq Tx$. Untuk sebarang $y \in F$, $||y - Tx|| \leq \delta(F)$. Misalkan $x_o = (x + Tx)/2$. Karena F adalah himpunan T-Renguler maka $Tx \in F$ Dan $x_o \in F$. Dari definisi ruang Banach Konvek Seragam terdapat α ; $0 \leq \alpha \leq 1$ sehingga $||x_o - y|| \alpha \delta(F)$ jadi $\delta(x_o, F) \leq \alpha \delta(F)$.

Lemma 3.2.2. (Lemma Zorn) .Misalkan M himpunan terurut parsial $M \neq \emptyset$, $S \subset M$ mempunyai batas atas di M . Maka M mempunyai elemen maksimum .

Bukti: [1]

Teorema 3.2.3. Misalkan X adalah ruang Banach Konvek Seragam dan K adalah himpunan T- Renguler kompak lemah. K tak kosong dan $K \subset X$. Misalkan pula $F \subset K$ himpunan tutup dengan $\delta(F) \geq 0$, maka terdapat β , $0 \leq \beta \leq 1$ sehingga $\|Tx - Ty\| \leq \text{makas } \{\|x - y\|, \delta(F)\}$ untuk setiap $x,y \in F$, maka T mempunyai titik tetap di K.

Bukti:

Misalkan K himpunan T-renguler kompak lemah, artinya untuk setiap $x_n \in K$ terdapat subbarisan $x_{nk} \to^w x$, $x \in K$. Dan K memenuhi definisi dan sifat dari himpunan T-Renguler yaitu: (i) T: K \to K dan (ii) $(x_{nk} + Tx_{nk})/2 \in K$.

Selanjutnya misalkan F adalah himpunan tutup lemah, $F \subseteq K$, artinya himpunan F tutup dalam ruang topologi lemah dari K.

Berikutnya misalkan H merupakan semua himpunan tutup lemah, H tak kosong dan H C K. Dengan menggunakan sifat 1 dari himpunan T-Renguler dan lemma Zorn

maka F merupakan elemen minimum dari H karena H tutup dan terbatas.

Asumsikan untuk suatu $x \in F$, $x \ne Tx$.

Karena F adalah himpunan T – Renguler dan F terbatas maka terdapat $x_0 \in F$ dan

$$\alpha$$
, $0 < \alpha < 1$ sehingga: $\delta(x_0, F) \le \alpha \delta(F)$(1)

Dari asumsi terdapat $\beta(F)$, dengan $0 < \beta(F) < 1$ sehingga:

$$||Tx - Ty|| \le \text{maks } \{ ||x - y||, \beta \delta(F), \text{ untuk setiap } x, y \in F \}$$
 (2)

dari (1) dan (2) diperoleh : $||Tx - Ty|| \le \beta \delta(F)$.

Misalkan $\alpha_0 = \text{makas } \{\alpha, \beta\}.$

$$E_0 = \{ x \in X : \delta(x,F) \le \alpha_0 \, \delta(F) \}$$

$$F_0 = E_0 \cap F$$

 $x_0 = E_0 \cap F$ maka F_0 tak kosong dan dari sifat (i), karena F himpunan tutup lemah dan E₀ himpunan T-Renguler maka F₀ juga tutup lemah.

Anggaplah $x \in F_0$, dan $||Tx - Ty|| \le \alpha_0 \delta(F)$ untuk setiap $y \in F$, maka T(F) berada dalam bola tutup $U[Tx, \alpha_0 \delta(F)]$.

Ini berarti $T(F \cap U) \subset (F \cap U)$ karena F himpunan T-Renguler dan U adalah himpunan konvek, maka (F\(\triangle U\)) juga merupakan himpunan T-Renguler. Berdasarkan sifat minimum dari F maka berlaku $T(F_0) \subset F_0$ dan karena $F_0 = E_0 \cap F$ dimana E_0 dan Fadalah himpunan T-Renguler maka F₀ juga merupakan himpunan T-Renguler Schingga $F_0 \in H$, tetapi $\delta(F_0) \leq \delta(F)$. Ini kontradiksi dengan pengandaian jadi untuk suatu $x \in F$ harusalah x = Tx, maka terbukti T mempunyai titik tetap di K.