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A B S T R A C T 

In this paper, we discuss the development and practical application of multigrid methods with 
local smoothing to solve convection diffusion problems on adaptively refined meshes. The meshes 
are generated through adaptive refinement according to local error indicated by a residual-based 
a posteriori error estimation technique. We present a multigrid algorithm in which the smoothing 
is carried out only on the refined portion of the mesh. The smoothers, such as Gauss Seidel 
and I LU , give a good performance in both standard multigrid and local smoothing multigrid. 
Through several numerical examples, it seems that the rate of convergence of multigrid does not 
depend on the grid size and the viscosity parameter. 

1. I N T R O D U C T I O N 

Recently, there has been intensive research aimed at attaining a more theoretical understanding 
of multigrid techniques. In particular, for self-adjoint linear elliptic boundary value problems 
the convergence theory has been well developed and has reached a mature, i f not final state. On 
the other hand, the quest for robust methods for convection-diffusion problems is ongoing. The 
application of a multigrid method becomes more problematic as the convection part becomes 
more dominant. This difficulty corresponds to finding a relaxation procedure that properly 
damps the high frequencies. In particular, even if the convection part is fairly modest with 
respect to the finest grid, it may stil l be difficult to find an appropriate smoother on the coarse 
grid level due to the fact that the mesh Peclet number is bigger on the coarser grids. 

Adaptive refinement mesh can increase the efficiency of the finite element approximation. 
However, applying standard multigrid to the problems on locally refined meshes by smoothing 
at all points in each level is not efficient. It leads to a non-optimal growth of work and memory. 
In such a case it is convenient to be able to use a multigrid algorithm in which the smoothing 
is carried out only on the refined portion of the mesh (see, for example [1],[10],[13]). The first 
analysis of local smoothing has been given by Bramble et al. in 1991 [3]. They showed that 
the smoothing need only be done in the refined subdomain, and proved the convergence of a 
multigrid algorithm without regularity assumptions. 

In this paper we address a local smoothing strategies as a solver for the linear equations 
arising on uniformly and Eidaptively refined meshes. We discuss the development and practical 
application of multigrid methods to solve P D E problems (l)-(2) on adaptively refined meshes. 
The approach followed here is the framework suggested by Christian Wieners in [13]. Then 
in this paper, we present numerical experiments associated with implementation of different 
strategies to address these issues. 

2. L I N E A R C O N V E C T I O N - D I F F U S I O N P R O B L E M S 

We consider a two-dimensional convection-diffusion problem of the following form 

where Q is an open region of JR?, and / and UB are given functions on 0 and dil, respectively. 

- e A M + cJ • V u = / in n , 

on dn, 
(1) 
(2) u = UB 
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0 < e << 1 is a diffusion or viscosity coefficient, and cD = (wxi^y) is a given flow velocity field 
such that ||w||x,«(n) = 1; V • w = 0. 

Finite element discretisation of the problem can be done as follows: assume homogeneous 
boundary conditions = 0 on all boundaries. Let (•, •) denote the usual L^{rt) inner product. 
The weak formulation of (1) and (2) is then: find u e X := H^{n) such that 

a{u,v) = if,v) yveX, (3) 

where the bilinear form is defined so that 

a(u, v) := e (Vu, Vv ) + (w • V u , v) Vu, veX. (4) 

Since fl is bounded and w is divergence-free, the bilinear form (4) has the following properties 
[5]: 

a{u,u)= e||Vw||2 VueX (5) 

\aiu,v)\< C||Vu|| ||Vt>|| yueX,veX. (6) 

We now state the streamline diffusion finite element method ( SDFEM) for (1) with homo­
genous Dirichlet boundary condition using the standard space of linear finite element functions 
Xh C X. Following Johnson [7, pp. 185-187], the approximation of (1), reads: find u/, € Xh, 
such that 

asD{uh,v) = l{v), (7) 

where 
asD{y'h,'v) •-a{uh,v)+ ^ (w • Vu/,, (Jrw • Vt ; ) r (8) 

Ter ' ' 
and 

Kv):={f,v)+ 6T{f,C3-Vv)T, (9) 
Ter'' 

for all V £ Xh and elements T in the triangulation T ' ' , where 6T is a non-negative constant to 
be specified. A good choice for the stabilisation parameter 5T has been introduced by Fischer 
et. al. in [5], which is as follows 

6r = (10) 

where 

for P j > 1 

for P j < 1 

(for details, see [5]) for all mesh Peclet numbers 

pT _ ^T||tJ|k°°(r) 
^ ~ 2e 

with HT is a measure of the element length in the direction of the wind. In the case (10) the 
form 05£)(, •,) satisfies the coercivity condition 

asviu,u) = £\\Vuf + Y 6T\\CS • Vu\\l Vu e Xh, (11) 

and implies that (8) has better stabiUty than (4) since there is additional coercivity in the local 
flow direction. 
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0 < £ << 1 is a diffusion or viscosity coefficient, and w = (wx.Wy) is a given flow velocity field 
such that ||w||t«(n) = 1; V • w = 0. 

Finite element discretisation of the problem can be done as follows: assume homogeneous 
boundary conditions i ts = 0 on all boundaries. Let (•, •) denote the usual L'^{Q.) inner product. 
The weak formulation of (1) and (2) is then: find ueX := H^{^) such that 

a{u,v)=^U,v) V v e X , (3) 

where the bilinear form is defined so that 

o(u, v) := e (Vu, Vv ) + (w • V u , v) Vu, v eX. (4) 

Since is bounded and w is divergence-free, the bilinear form (4) has the following properties 
[5]: 

a{u,u)= £||Vu||2 V u e X (5) 

\aiu,v)\< C||Vw|| llVvll VueX,veX. (6) 

We now state the streamline diffusion finite element method ( SDFEM) for (1) with homo­
genous Dirichlet boundary condition using the standard space of linear finite element functions 
Xh C X. Following Johnson [7, pp. 185-187], the approximation of (1), reads: find Uh € Xh, 
such that 

asDiuh,v) = l{v), (7) 

where 
asoiuk, v) := a{uh, v) + ^ (w • Vu/,, STCJ • VV)T (8) 

and 
l{v):={f,v)+ J2 ^T{f,CS-Vv)T, (9) 

TeT'' 

for all V e Xh and elements T in the triangulation T ' ' , where 5T is a non-negative constant to 
be specified. A good choice for the stabilisation parameter ST has been introduced by Fischer 
et. al. in [5], which is as follows 

5*hT 

where 

ST = (10) 

* \0 for Pj <l 

(for details, see [5]) for all mesh Peclet numbers 

pT _ ^T||t^||L°°(r) 
- 2s 

with hr is a measure of the element length in the direction of the wind. In the case (10) the 
form asoir,) satisfies the coercivity condition 

asD{u, u) = e\\Vuf + <̂ T||W • Vu||^ Vu e Xh, (11) 

and implies that (8) has better stability than (4) since there is additional coercivity in the local 
flow direction. 
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3. A L O C A L S M O O T H I N G M U L T I G R I D S T R A T E G Y 

We consider the Unear system arising from streamline diffusion finite element discretisation (7) 

Au = b, (12) 

where 4̂ is a nonsymmetric matrix. It is well known that if e is small, i.e. for a convection-
dominated problem, the construction of appropriate fast solvers becomes more difficult. In this 
section we discuss a simple multigrid strategy, as a solver to solve such a linear system. 

4. M U L T I G R I D W I T H L O C A L S M O O T H I N G 

Let f i C iR^ be a domain and let {7fc}, fc = 0, • • • , kmax be the sequence of grids approximating 
il. The set of triangular elements is denoted by T * , fc = 0, • • • , kmax- Assume that there exists 
a father element T{E) € T''~^ for all E € T*^. The set of son elements is defined as follows 

g{F) = {E€T''\ HE) = F) . 

The refinement of an element F to Q{F) can be of type regular, irregular or copy (for detail 
see Wieners [13], Bastian [2]). Furthermore, let be the set of vertices that belong to an 
element E. Based on the types of elements above, the vertices can be classified as follows. 

• Set d{P) = 3, if there exists a refined element E such that P G •p(i5); 

• set c/(P) = 2, if d ( P ) ^ 3 and if there exists an element E such that P, Q € P ( £ ) and 
d{Q) = 3; 

• set c/(P) = 1, if d ( P ) ^ 2, d ( P ) 7̂  3 and if there exists an element E such that P , Q e 
V{E) and d{Q) = 2; 

• set c/(P) = 0 for all remaining points P GVk-

As an example, see Figures 1 and 2. Let be the initial mesh. The mesh is then locally 
refined into (see Figure 2). A l l vertices in base level T ° get class 3. While on the loced grid 
T^, all vertices marked by ' 0 ' get class 3, the vertices marked by '* ' get class 2 and the vertices 
marked by 'o' get class 1. Finally the unmarked vertices get class 0. 

Figure 1: A n initial mesh T° 

4.1. Local smoothing 

In the implementation of multigrid on locally refined meshes, the relaxation is carried out only 
for nodes that belong to the refined elements and some copy elements. This implies that local 
smoothing is performed to solve the system of equations 
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72 77' 

Figure 2: The mesh V 

where 7̂ ^̂  contains all nodes P eVk for d{P) > 2. The smoothing is given by the following 
algorithm. 

Algorithm 0.1 (Local smoothing) 
[e^r'=]=5(e^^^^'=) 

1. Smooth Bv* = r^ where B w (A*(7;*J) ; 

2. := - .(4*v*, /or nodes m 7 *̂̂  

3. := e* + v'' 

The computation in step 1 in Algorithm 0.1 should be local, e.g. B = LU (incomplete L U 
decomposition of A{Tioc))- The defect r*̂  in step 2 is computed for al l nodes of class 2 and 3. 
The correction step of the algorithm ensures smoothing on the refined region only i.e. all nodes 
of class 3. 

4.2. Intergrid transfer 

Since we deal with the meshes generated adaptively, the prolongation and restriction can be 
constructed locally. To this end, let a vector v* on each level k be partitioned as 

(13) 

where is associated with the nodes of T*^~^ C T*^ and is associated with the nodes that 
are in but not in T*^"^. Following the partition in (13), the prolongation and restriction is 
given by 

where i^-i operator forming the arithmetic average of two values at nodes connected 
by an edge of the coarse triangulation. This implies that i^_^{P,Q) ^ 0 only if there is an 
element E e T * such that P , Q € 'P{E) and Q 6 r{J^{E)). Furthermore, using (13) and (14), 
the interpolation from level - 1 to level fc can be written as 

v « = i t . v - = (j,;;*;L). (15) 

which give values to new nodes iaPk\'Pk-i- Similarly, the restriction is given by 

v*=-i = I * - V = v * + J * - V J . (16) 

61 



Mashadi, Syamsudhuha, M D H Gamal dan M . Imran, (Eds) 
Proceedings of the International Seminar on Mathematics and Its Usage in Other Areas 

November 11 - 12,2010 
ISBN, 978-979-1222-9S-2 

This restriction wi l l changes the value of v (P ) , i f I ^ ' ^ P . Q ) ^ 0 for P e Vk-i and Q e 
rk\Vk-i. 

4.3. Local multigrid algorithm 

We consider a linear system of equations A''u'' = b'' on each level fc. Note that A * arises from 
discretisation on a triangulation T*' for fc = 0,1, • • • , kmax- Whilst b** comes from discretisation 
(9) for fc = kmax (the finest level), and b* = r* for coarser levels (fc < kmax)- Having defined 
the local smoothing and local grid transfer, a multigrid algorithm for local mesh refinement can 
be written as follows: 

Algorithm 0.2 (Local multigrid) 
[e'=,r'=] = LMG(A*=,r'=) 

1. 6*= = 0 

2. ifk = 0 the coarsest level 
e° = (AO) - i rO 

3. else 

(a) forO <i< m i , 

[e*,r'=] :=5(e^A^r'=); 

r6jr '=-^=Xr^r^ 

(c) [e'=-i,r'=-i] = ZMG (yl '=-\r '=- i ) 

v ' = = l t i e ' = - i ; 

(e) 6*= := 6*= + v'=; 

(f) r'' := r'= - A'=v'=; 

(g) for 0 <i < m2, 
[e^r*']:=<S(e^A^r'»). 

The restriction from level fc to fc - 1 in step 3b changes only the nodal values P e V''~^ such 
that d{Q{P)) > 2 in V''. The linear interpolation in step 3d is used to prolongate the 
correction at all the nodes. This interpolation of e*̂ ~̂  (P) wil l not change e'^(P) for all P e Vk-i-
Hence, the smoothing and error correction process (relaxation, restriction and interpolation) are 
performed only on local grids. The complete multigrid solver for locally refined grids is finally 
defined as follows. 

Algorithm 0.3 (Local multigrid solver (LMG)) 

1. TQ = 6* - A ' ^ U Q , for a given initial guess UQ 

2. repeat 

• [e^r'=] :=LMG(A ' = , r '= ) ; 

• u** := u*' + e*'; 

3. untUWr^ < T O i x ||r§|| 

Here, it is not necessary to update the defect r*", since after every multigrid cycle the equahty 
r'' = b'= - A'=(u'= + e'') holds. 
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5. N U M E R I C A L R E S U L T S 

Now we apply the local multigrid technique ( LMG) as a solver and a preconditioner ( L M G -
G M R E S ) to solve the test problems given in (l)-(2) on a locally refined mesh. As test problems 
we consider the equation, 

-£ A u + w • V t i = 0 in n = (0,1) X (0,1), (17) 

with (Dirichlet) boundary conditions as described in Figure 3. We take the following cases. 

u = 0 

Q 

0 0.5 

Figure 3: Boundary conditions 

1. Constant wind w = {•̂ , •^); 

2. Recirculating wind w = (2(2y - 1)(1 - (2x - 1)^), 2(2x - 1)(1 - (2y - 1)^)); 

The equations are discretised using the S D F E M (see (7)) on triangular meshes. The meshes are 
refined (uniformly and adaptively) by connecting the mid-edges of triangles. We use the most 
basic multigrid method, namely a single V-Cycle on a series of nested grids. We begin with a 
finest grid of a certain size, then produce a series of coarser grids down to the coarsest level 
0. On the coarsest grid level, we perform direct solution. Information is then passed straight 
back up through the same sequence in reverse to the finest level. The smoothers used are a 
standard point Gauss Seidel (GS) iteration and an Incomplete L U factorisation (ILU) method 
where the nodes are ordered by Matlab. One pre- and post-smoothing is performed at each level 
(MG-V(1,1)) for case 1, and we use MG-V(2,2) for case 2. The I L U method in this experiment 
is the Matlab built in function l u i n c . For grid transfer we use a standard linear interpolation 
which is easily applied in both uniform and non-uniform grid cases. The iteration is said to be 
converged when the error is less than the given tolerance, that is 

| M < 10-6, .^ijg^g r = f - A u , 

with initial guess uo = 0, a zero vector. After extensive testing, we determined an "optimal" 
strategy - that was choosing one local relaxation (i.e. m i = 1 in Algorithm 0.2 ) at the pre-
smoothing step. Whilst at the post-smoothing step we use one local and one standard relaxation. 
The results are presented in term of tables. The tables display; number of iterations (NI), and 
the number of floating point operations in millions (Mflops). We use the standard multigrid 
method (MG) and multigrid with Local smoothing ( LMG) . 

Table 1 and Tabel 2 present results using M G and L M G respectively to solve Problem 1. It 
seems that L M G as a solver is fairly sensitive to any variation of the parameter e. Using L M G 
as a preconditioner however, seems to be less sensitive to the change of e. Grid-independent 
convergence is observed for both L M G and L M G - G M R E S methods. The convergence rate of 
L M G - G M R E S is slightly faster than L M G method. L M G - G M R E S however, is more expensive 
than L M G , especially for linear systems of equations with high dimension. Moreover, from the 
table we see that L M G with I L U smoother is the most efficient solver in this case. 
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£ d.o.f M G M G - G M R E S 
NI Mflops NI Mflops 

1098 12 1.7 8 1.8 
2144 14 3.9 9 4.1 

10-3 4188 12 6.7 9 8.1 
8490 11 17.2 9 20.3 

16363 7 31.0 6 33.3 
1101 14 2.04 9 2.1 
2175 18 5.37 11 5.4 
4290 17 10.23 12 12.1 

10-6 8744 21 35.89 13 33.3 
16563 18 69.19 13 71.0 
32390 21 128.80 15 143.4 

Table 1: Multigrid convergence history for GS smoother: constant wind 

10-a 
L M G L M G - G M R E S 

d.o.f GS I L U GS I L U 
NI Mflops NI Mflops NI Mflops NI Mflops 

1098 9 1.4 5 1.3 6 1.4 5 1.7 
2144 10 3.1 5 2.7 7 3.3 5 3.3 
4188 9 5.5 5 5.2 7 6.4 5 6.5 
8490 9 13.5 4 10.3 7 14.7 4 12.3 

16363 7 26.1 4 25.7 6 28.9 4 29.5 
e = 10-** 

1101 10 1.5 5 1.3 7 1.6 5 1.7 
2175 13 4.1 7 3.8 8 3.8 5 3.4 
4290 13 8.1 6 6.5 9 8.7 6 8.2 
8744 16 24.8 8 21.6 11 25.6 7 23.3 

16563 16 52.6 8 45.8 12 57.9 7 48.4 
32390 18 101.0 9 87.8 13 113.8 8 97.7 

Table 2: LocaJ multigrid convergence history: constant wind 
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We now study the results in Table 2 and Table 1. Comparison of these tables shows that 
(as expected) the operational cost of L M G scheme is less than that of standard multigrid (MG). 
It converges faster than M G . Interestingly, its cost is also (mostly) less than that of M G . For 
instance, we consider the problem with e = 10"^, and dof = 16563. M G in Table 1 converge 
after 18 iterations with 69.16 Mflops, respectively. On the other hand L M G needs 16 iterations 
and 52.6 Mflops. 

e = 10-^ 
d.o.f L M G L M G - G M R E S 

GS I L U GS I L U 
NI Mflops NI Mflops NI Mflops NI Mflops 

1007 56 9.4 34 10.2 18 5.2 12 4.8 
2210 47 20.3 29 22.6 18 112.6 12 11.9 
3180 42 32.5 27 38.3 17 19.5 11 18.9 
3560 38 41.5 25 50.1 15 22.2 10 23.2 
3693 36 49.9 24 61.1 15 26.8 9 25.7 

e = 10 - " 
1073 196 34.8 164 51.9 28 9.8 16 7.0 
2855 196 120.3 123 137.2 39 46.8 24 36.8 
4108 173 177.5 106 198.7 39 55.4 25 62.2 
5120 104 238.6 97 270.9 40 103.8 26 93.0 
7767 138 288.6 87 334.1 41 153.6 25 125.1 

Table 3: Local multigrid convergence history: recirculating wind 

Table 3 presents the local multigrid performance for the problem with recurculating wind. As 
in Problem 1, L M G as a solver and a preconditioner converges independent of the grid size. The 
convergence rate of L M G is on the other hand, both slower and more sensitive to the viscosity 
parameter than other methods. Using L M G as a preconditioner in this case can improve the 
convergence by factor of three. 

6. C O N C L U S I O N 

Two test problems have been solved using two different multigrid techniques ( M G and L M G ) . 
We have shown that the local relaxation affects the convergence rate appreciably. For problems 
with dominant diffusion, the standard multigrid may be used instead of L M G to obtain efficient 
convergence. L M G is shown to have less cost than the standard M G methods. In particular, for 
constant wind (Problem 1), this method (with I L U smoother) is the most efficient method. In 
the recirculating wind case, L M G - G M R E S (with I L U smoother) performs better than L M G . 
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