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ON VOLUMES OF n-DIMENSIONAL
PARALLELEPIPEDS IN `p SPACES

H. Gunawan, W. Setya-Budhi, Mashadi, S. Gemawati

Given a linearly independent set of n vectors in a normed space, we are
interested in computing the “volume” of the n-dimensional parallelepiped
spanned by them. In `p (1 ≤ p < ∞), we can use the known semi-inner
product and obtain, in general, n! ways of doing it, depending on the order
of the vectors. We show, however, that all resulting “volumes” satisfy one
common inequality.

1. INTRODUCTION

On a normed space (X, ‖ · ‖), the functional g : X2 → R defined by the
formula

g(x, y) :=
‖x‖
2

(
λ+(x, y) + λ−(x, y)

)
,

where
λ±(x, y) := lim

t→±0
t−1

(
‖x + ty‖ − ‖x‖

)
,

satisfies the following properties:

(a) g(x, x) = ‖x‖2 for all x ∈ X;
(b) g(αx, βy) = αβg(x, y) for all x, y ∈ X, α, β ∈ R;
(c) g(x, x + y) = ‖x‖2 + g(x, y) for all x, y ∈ X;
(d) |g(x, y)| ≤ ‖x‖‖y‖ for all x, y ∈ X.
If, in addition, the functional g(x, y) is linear in y ∈ X, it is called a semi-inner
product on X (see [3, 4]). For instance, the functional

(1) g(x, y) := ‖x‖2−p
p

∑
k

|xk|p−1sgn(xk)yk, x = (xk), y = (yk) ∈ `p,
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defines a semi-inner product on the space `p of p-summable sequences of real num-
bers, for 1 ≤ p < ∞. (Here ‖ · ‖p is the usual norm on `p.)

Using a semi-inner product g, one may define the notion of orthogonality on
X. In particular, we can define

x ⊥g y ⇔ g(x, y) = 0.

(Note that since g is in general not commutative, x ⊥g y does not imply that
y ⊥g x.) Further, one can also define the g-orthogonal projection of y on x by

yx :=
g(x, y)
‖x‖2

x,

and call y−yx the g-orthogonal complement of y on x. Notice here that x ⊥g y−yx.
In general, given a vector y ∈ X and a subspace S = span{x1, . . . , xk} of X

with Γ(x1, . . . , xk) := det(g(xi, xj)) 6= 0, we can define the g-orthogonal projection
of y on S by

yS := − 1
Γ(x1, . . . , xk)

∣∣∣∣∣∣∣∣∣
0 x1 . . . xk

g(x1, y) g(x1, x1) . . . g(x1, xk)
...

...
. . .

...
g(xk, y) g(xk, x1) . . . g(xk, xk)

∣∣∣∣∣∣∣∣∣ ,

for which its orthogonal complement y − yS is given by

y − yS =
1

Γ(x1, . . . , xk)

∣∣∣∣∣∣∣∣∣
y x1 . . . xk

g(x1, y) g(x1, x1) . . . g(x1, xk)
...

...
. . .

...
g(xk, y) g(xk, x1) . . . g(xk, xk)

∣∣∣∣∣∣∣∣∣ .

Observe here that xi ⊥g y − yS for each i = 1, . . . , k.
Next, given a finite sequence of linearly independent vectors x1, . . . , xn

(n ≥ 2) in X, we can construct a left g-orthogonal sequence x∗1, . . . , x
∗
n as in [4]:

Put x∗1 := x1 and, for i = 2, . . . , n, let

(2) x∗i := xi − (xi)Si−1 ,

where Si−1 = span{x∗1, . . . , x∗i−1}. Then clearly x∗i ⊥g x∗j for i, j = 1, . . . , n with
i < j. Having done so, we may now define the “volume” of the n-dimensional
parallelepiped spanned by x1, . . . , xn in X to be

(3) V (x1, . . . , xn) :=
n∏

i=1

‖x∗i ‖.

Due to the limitation of g, however, V (x1, . . . , xn) may not be invariant under
permutations of (x1, . . . , xn).
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In the following section, we shall consider the parallelepipeds spanned by n
linearly independent vectors in `p (1 ≤ p < ∞). Our main result shows that their
“volumes” satisfy one common inequality, which involves the natural n-norm of
those vectors in `p.

2. MAIN RESULT

Suppose, hereafter, that 1 ≤ p < ∞. The so-called (natural) n-norm on `p is
the functional ‖·, . . . , ·‖p : (`p)n → R defined by the formula

‖x1, . . . , xn‖p :=

 1
n!

∑
jn

· · ·
∑
j1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x1j1 . . . x1jn

...
. . .

...
xnj1 . . . xnjn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p 

1/p

(see [1]). (Here the outer | · · · | denotes the absolute value, while the inner | · · · |
denotes the determinant.) For p = 2, we have ‖x1, . . . , xn‖2 =

√
det(〈xi, xj〉),

which represents the Euclidean volume of the n-dimensional parallelepiped spanned
by x1, . . . , xn in `2. (Here 〈·, ·〉 denotes the usual inner product on `2.) For n = 1,
the 1-norm coincides with the usual norm on `p. The n-norm ‖·, . . . , ·‖p on `p

satisfies the following four basic properties:

(a) ‖x1, . . . , xn‖p = 0 if and only if x1, . . . , xn are linearly dependent;
(b) ‖x1, . . . , xn‖p is invariant under permutation;
(c) ‖αx1, x2, . . . , xn‖p = |α| ‖x1, x2, . . . , xn‖p for any α ∈ R;
(d) ‖x1 + x′1, x2, . . . , xn‖p ≤ ‖x1, x2, . . . , xn‖p + ‖x′1, x2, . . . , xn‖p.
Further properties of this functional on `p can be found in [1]. See also [2, 5], and
the references therein, for related works.

Our theorem below relates the “volume” V (x1, . . . , xn) defined by (3) and
the n-norm ‖x1, . . . , xn‖p, which also represents a volume of the n-dimensional
parallelepiped spanned by x1, . . . , xn in `p.

We assume hereafter that n ≥ 2.

Theorem 1. Let {x1, . . . , xn} be a linearly independent set of vectors in `p. For
any permutation (i1, . . . , in) of (1, . . . , n), define V (xi1 , . . . , xin

) as in (3) by using
the semi-inner product g in (1), with x∗1 = xi1 and so forth as in (2). Then we have

V (xi1 , . . . , xin
) ≤ (n!)1/p‖x1, . . . , xn‖p.

The following example illustrates the situation in `1. Let x1 = (1, 0, 0, . . . )
and x2 = (1, 1, 0, . . . ). Put x∗1 = x1 and x∗2 = x2 − (x2)x1 = (0, 1, 0, . . . ). Then
we have V (x1, x2) = ‖x∗1‖1‖x∗2‖1 = 1 · 1 = 1. But if we put x∗1 = x2 and x∗2 =
x1 − (x1)x2 = ( 1

2 ,− 1
2 , 0, . . . ), then we have V (x2, x1) = ‖x∗1‖1‖x∗2‖1 = 2 · 1 = 2.

Meanwhile,
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‖x1, x2‖1 =
1
2

∑
j

∑
k

∣∣∣∣∣∣∣ x1j x1k

x2j x2k

∣∣∣∣∣∣∣ =
1
2

(∣∣∣ 1 0
1 1

∣∣∣ +
∣∣∣ 0 1

1 1

∣∣∣) =
1
2
(1 + 1) = 1.

Hence we see that V (xi1 , xi2) ≤ 2‖x1, x2‖1 for each permutation (i1, i2) of (1, 2).

Proof of Theorem 1. Since ‖x1, . . . , xn‖p is invariant under permutation, it
suffices for us to show that

V (x1, . . . , xn) ≤ (n!)1/p‖x1, . . . , xn‖p.

Recall that V (x1, . . . , xn) =
n∏

i=1

‖x∗i ‖, where x∗1, . . . , x
∗
n is the left g-orthogonal

sequence constructed from x1, . . . , xn (with x∗1 = x1 and so forth as in (2)). From
the construction of x∗1, . . . , x

∗
n, we have

x∗n =
1

Γ(x∗1, . . . , x
∗
n−1)

∣∣∣∣∣∣∣∣∣
xn x∗1 . . . x∗n−1

g(x∗1, xn) g(x∗1, x
∗
1) . . . g(x∗1, x

∗
n−1)

...
...

. . .
...

g(x∗n−1, xn) g(x∗n−1, x
∗
1) . . . g(x∗n−1, x

∗
n−1)

∣∣∣∣∣∣∣∣∣ .

But Γ(x∗1, . . . , x
∗
n−1) =

n−1∏
i=1

‖x∗i ‖2
p, and so

‖x∗n‖p =
n−1∏
i=1

‖x∗i ‖−2
p

∑
jn

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
xnjn x∗1jn

. . . x∗n−1,jn

g(x∗1, xn) g(x∗1, x
∗
1) . . . g(x∗1, x

∗
n−1)

...
...

. . .
...

g(x∗n−1, xn) g(x∗n−1, x
∗
1) . . . g(x∗n−1, x

∗
n−1)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
p 

1/p

.

Hence, the “volume” V (x1, . . . , xn) is equal to

n−1∏
i=1

‖x∗i ‖−1
p

∑
jn

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
xnjn x∗1jn

. . . x∗n−1,jn

g(x∗1, xn) g(x∗1, x
∗
1) . . . g(x∗1, x

∗
n−1)

...
...

. . .
...

g(x∗n−1, xn) g(x∗n−1, x
∗
1) . . . g(x∗n−1, x

∗
n−1)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
p 

1/p

.

By using properties of determinants, we find that V (x1, . . . , xn) is equal to

∑
jn

∣∣∣∣∣∣∣∣∣
n−1∏
i=1

‖x∗i ‖−1
p

∣∣∣∣∣∣∣∣∣
g(x∗1, x

∗
1) . . . g(x∗n−1, x

∗
1) x∗1jn

...
...

. . .
...

g(x∗1, x
∗
n−1) . . . g(x∗n−1, x

∗
n−1) x∗n−1,jn

g(x∗1, xn) . . . g(x∗n−1, xn) xnjn

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
p 

1/p

.
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Since x∗1 = x1 and g(x, y) is linear in y, it follows that V (x1, . . . , xn) is equal to∑
jn

∣∣∣∣∣∣∣∣∣
n−1∏
i=1

‖x∗i ‖−1
p

∣∣∣∣∣∣∣∣∣
g(x∗1, x1) . . . g(x∗n−1, x1) x1jn

...
...

. . .
...

g(x∗1, xn−1) . . . g(x∗n−1, xn−1) xn−1,jn

g(x∗1, xn) . . . g(x∗n−1, xn) xnjn

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
p 

1/p

.

Now g(x∗i , xk) = ‖x∗i ‖2−p
p

∑
ji

|xiji
|p−1sgn(xiji

)xkji
, and we can take the sums out of

the determinant, so that the above expression is dominated by∑
jn

∑
jn−1

· · ·
∑
j1

|xn−1,jn−1 |p−1

‖x∗n−1‖
p−1
p

· · · |x1j1 |p−1

‖x∗1‖
p−1
p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x1j1 . . . x1jn

...
. . .

...
xnj1 . . . xnjn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


p
1/p

.

By Hölder’s inequality (applied to the multiple series inside the inner square
brackets), the last expression is dominated by∑

jn

∑
jn−1

· · ·
∑
j1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x1j1 . . . x1jn

...
. . .

...
xnj1 . . . xnjn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p 

1/p

,

which is equal to (n!)1/p‖x1, . . . , xn‖p. This proves our theorem.

3. CONCLUDING REMARKS

Unlike in inner product spaces, we generally do not have an analogue of
Hadamard’s inequality (see, e.g., [6, p. 597])

V (x1, . . . , xn) ≤
n∏

i=1

‖xi‖.

For a counterexample, take x1 = (1, 2, 0, . . . ) and x2 = (2,−1, 0, . . . ) in `1. Then
one may check that V (x1, x2) = V (x2, x1) = 3 · 10

3 > ‖x1‖1‖x2‖1. (This adds a rea-
son why we write the word “volume” between quotation marks for V (x1, . . . , xn).)

It is worth noting, however, that the analogue of Hadamard’s inequality is
satisfied particularly by the n-norm ‖·, . . . , ·‖1 on `1. Indeed, the inequality

‖x1, . . . , xn‖1 ≤
n∏

i=1

‖xi‖1

holds for every x1, . . . , xn in `1 (see [1]). Hence the n-norm ‖·, . . . , ·‖1 has the
desirable properties for volumes of n-dimensional parallelepipeds in `1.
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The reader might also wonder why we do not define the volume of the n-
dimensional parallelepiped spanned by x1, . . . , xn in X to be

V (x1, . . . , xn) :=
√

Γ(x1, . . . , xn),

instead of (3). Although Γ(x1, . . . , xn) = det
(
g(xi, xj)

)
is invariant under per-

mutation, there are a few problems with this formula. First, Γ(x1, . . . , xn) may
be negative when n ≥ 3. For example, take x1 = (1, 2,−1/10, 0, . . . ), x2 =
(2, 1, 1/10, 0, . . . ), and x3 = (1,−1, 1, 0, . . . ) in `1. Then one may check that
Γ(x1, x2, x3) < 0. Next, for n = 2, we can have Γ(x1, x2) = 0 even though x1 and x2

are linearly dependent. For example, take x1 = (1, 2, 0, . . . ) and x2 = (2, 1, 0, . . . )
in `1. Clearly x1 and x2 are linearly independent. But one may check that

g(xi, xj) = 9 for i, j = 1, 2, and so Γ(x1, x2) =
∣∣∣ 9 9

9 9

∣∣∣ = 0. (This explains

why we require Γ(x1, . . . , xn) 6= 0 when we define the g-orthogonal projection on
the subspace S = span{x1, . . . , xn}.)

One should also note that the analogue of Hadamard’s inequality is not
satisfied by |Γ|, that is, the inequality

|Γ(x1, . . . , xn)| ≤
n∏

i=1

‖xi‖2

does not hold. For a counterexample, take x1 = (1, 2, 0, . . . ) and x2 = (2,−1, 0, . . . )
in `1. Then we have |Γ(x1, x2)| = 90 > ‖x1‖2

1‖x2‖2
1. Nevertheless, we have the

following result for Γ. (We leave its proof to the reader.)

Theorem 2. The inequality

|Γ(x1, . . . , xn)| ≤ (n!)1/p‖x1, . . . , xn‖p

n∏
i=1

‖xi‖p

holds for every x1, . . . , xn in `p.
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